Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1561
標題: 含外加吸振器搪孔刀具動態響應之探討
Studies of Dynamic Responses of Boring Bar Containing an External Vibration Absorber
作者: 嚴秀文
Yen, Hsiu-Wen
關鍵字: boring
搪孔
vibration absorber
dynamic responses
吸振器
動態響應
出版社: 機械工程學系所
引用: [1] Y. S. Tarng, J. Y. Kao and E. C. Lee, “Chatter suppression in turning operations with a tuned vibration absorber,”Journal of Materials Processing Technology, pp.55-60 (2000) [2] Neil D. Sims, “Vibration absorbers for chatter suppression: A new analytical tuning methodology, ” Journal of Sound and Vibration, pp.592-607 (2007). [3] H. Moradi, F. Bakhtiari-Nejad and M. R. Movahhedy, “Tuneable Vibration Absorber Design to Suppress Vibrations : An Application in Boring Manufacturing Process,"Journal of Sound and Vibration, pp.1-16 (2008). [4] B. Moetakef-Imani and N.Z.Yussefian, “ Dynamic simulation of boring process,” International Journal of Machine Tools & Manufacture, pp.1096-1103 (2009) [5] M.H. Miguelez, L.Rubio, J.A.Loya, and J.Fernandez-Saez,“Improvement of chatter stability in boring operations with passive vibration absorbers,” International Journal of Mechanical Sciences, pp.1376-1384 (2010) [6] Shuzo Nagano, Takayuki Koizumi, Toru Fujii, Nobutaka Tsujiuchi, Hiroki Ueda and Kobe Steel, “Development of a Composite Boring Bar,” Composite Structures, pp.531-539 (1997). [7] Dai Gil Lee, Hui Yun Hwang and Jin Kook Kim, “Design and manufacture of a carbon fiber epoxy rotating boring bar,” Composite Structures, pp.115-124 (2003). [8] Min-Yung Chang, Jeng-Keag Chen and Chin-Yung Chang, “A Simple Spinning Laminated Composite Shaft Modal,” Solids and Structures, pp.637-662 (2004) [9] 陳鄭貴, 複合材料旋轉軸之動態響應與其振動控制之探討,碩士論文, 中興大學機械研究所 (1998). [10] 蔡家偉, 複合材料旋轉軸-圓盤系統振動特性之探討,碩士論文, 中興大學機械研究所 (2005). [11] 李官穎, 搪孔刀具加工時動態響應之探討, 碩士論文,中興大學機械研究所 (2009). [12] 魏瑞宏, 旋轉軸系統之振動與控制-兩種數學模式之比較,碩士論文, 中興大學機械研究所 (2001). [13] J. N. Reddy, An Introduction to Finite Element Method, McGraw-Hill (1984). [14] Yusuf Altintas, Manufacturing Automation: metal Cutting Mechanics, Machine Tool Vibration, and CNC Design, New York: Cambridge University Press (2000). [15] 蘇哲弘, 複合材料軸-樑系統振動特性之研究, 碩士論文,中興大學機械研究所 (2001).
摘要: 本論文主要的目的是建立含外加吸振器之旋轉軸系統的有限元素模式,探討搪孔刀具切削加工時系統的穩定性邊界與其動態響應。所分析的搪孔刀具系統包括等向性材料軸與複合材料軸,以及裝置在這些軸外部的吸振器。本文中之吸振器以質量塊、彈簧與阻尼器模擬,其運動方向固定,並未隨軸轉動。推導運動方程式時,使用固定於軸上的動座標來描述旋轉軸的變形,考慮旋轉軸動能,旋轉軸應變能,以及吸振器和因切削對旋轉軸之作用力所做的功,再應用漢米爾頓原理配合有限元素方法推導出含外加吸振器之旋轉搪孔刀具系統的運動方程式。在求取切削系統的穩定性邊界之前,為簡化分析,忽略運動方程中含轉速的矩陣,其次利用模態法將運動方程中軸的振動位移以模態座標表示。本文僅應用單一振動模態與吸振器偶合的簡化系統方程,求得搪孔刀具切削的穩定性邊界。為了檢視利用前述簡化系統所求得的穩定性邊界,本文另以直接積分法中的Newmark方法,對模擬實際切削系統之有限元素運動方程做暫態響應分析。採用上述方法,本文實例中依序分析等向性軸與複合材料軸之搪孔刀具,並比較刀具在切削過程中不含吸振器與含吸振器之系統的穩定範圍與動態響應,同時分析搪孔刀具裝置吸振器位置的影響,也對刀具系統在不同轉速下切削的穩定性邊界與動態響應做詳細的探討。
The main goal of this thesis is to develop a finite element model of the spinning shaft containing an external vibration absorber for studying the stability lobes and dynamic responses of the boring bar during machining process. The boring bar systems being analyzed includes shafts made of isotropic or composite materials, and a vibration absorber attached externally to the shaft. To derive the equations of motion, the rotating reference frame fixed in the shaft is chosen to describe the elastic displacement fields. Next, the kinetic and strain energies of the shaft are obtained. With these energy expressions and also the work done on the shaft by the cutting force as well as by the force that the vibration absorber exerts, the Hamilton's principle is then applied together with the finite element method to derive the equations of motion of the system.Before obtaining the stability lobes of the boring process, for the purpose of simplification, the matrices containing the rotational speed in the equations of motion are omitted. Next, the displacements of shaft are transformed into modal coordinates by modal analysis. In the thesis only a simplified system consisting of a single vibration mode of shaft and the vibration absorber is used to determine the stability lobes. In order to verify the stability lobes obtained by using this simplified system, the Newmark method is employed to solve directly the original finite element equations of motion to determine the transient responses of the system.In the examples, the steel and the composite boring bars are analyzed where their stability lobes and dynamic responses with or without an external vibration absorber are investigated. The influences of the locations of the vibration absorber are explored. A detailed study of the stability lobes and dynamic responses of the systems at different cutting speeds are also given.
URI: http://hdl.handle.net/11455/1561
其他識別: U0005-1708201121300300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201121300300
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.