Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15615
標題: 感潮河段潮波反射及摩擦效應之探討
Tidal Reflection and Friction Effects in Estuaries
作者: 李權宸
Lee, Cyuan-Chen
關鍵字: Tidal Reach
感潮河段
Reflection coefficient
wave number
Damping modulus
Manning coefficient
潮波反射係數
潮波波數
阻尼模數
曼寧係數
出版社: 土木工程學系所
引用: 王順加 (1996),"感潮河川垂直二維水理現象之探討", 國立台灣大學土木工程研究所碩士論文。 王燦汶、徐年盛、賴經都、林永祥(1997),"感潮河段防洪措施檢討",國立台灣大學水工試驗所。 李鴻源(1995),"淡水河感潮特性之探討(二)",國立台灣大學水工試驗所。 阮應店 (1997),"烏溪感潮河段延散係數之實測與研究",逢甲大學土木水利工程研究所碩士論文。 吳銘峰、陳星佑、趙錦倫 (1999),"烏溪感潮河段水理調查及分析", 逢甲大學土木水利工程系。 吳仁友、黃良雄、曾鈞敏 (2001),"感潮河口之水理計算–以鹽水溪為例" 中國土木水利工程學刊 第十三卷 第三期(民國九十年) p. 533–541。 柳文成、許銘熙、郭義雄、郭振泰(1998),"淡水河河口環流特性之研究",台灣水利,第46卷第一期,pp. 33-42。 柳文成、許銘熙、郭義雄、吳啟瑞、王琪芳(2003)," 利用數值模式探討淡水河系感潮段之水理特性",台灣水利,第51卷第一期,pp. 1-8。 陳偉柏 (2005),"淡水河口與近海三維水動力模式之模擬與應用" , 國立中央大學 水文科學研究所碩士論文。 張正誼 (1995),"感潮河川垂直二維數值模擬之研究", 國立台灣大學 土木工程研究所碩士論文。 張瑞津、石再添(1989),"淡水河下游感潮的研究",地理學研究第十三期。 許時雄(1969),"淡水河下游感潮的研究",水利復刊第七期。 許銘熙、郭振泰、郭義雄、柳文成(1996、1997),"淡水河系潮流、河口環流與鹽分佈之研究(一)、(二) ",國立臺灣大學水工試驗所研究報告239及273號。 許銘熙、郭義雄、郭振泰、柳文成(1998、1999),"淡水河感潮段垂直二維水理與水質動態傳輸模式(一)、(二) ",行政院國科會專題計畫研究成果報告。 經濟部水利署第十河川局(2002),”基隆河整體治理計畫(草案)”。 經濟部水利署第十河川局 (2005),"淡水河系感潮段2004全潮量測之輔助計算(2/2)期中報告"。 經濟部水利署規劃試驗所 (1997),"烏溪下游段低水治理規劃" p.55-62。 經濟部水利署規劃試驗所 (2004),"淡水河治理規劃報告"。 葉姍霈 (2002),"台灣海域高解析度潮汐模式之建立—敏感度試驗"國立成功大學 水利及海洋工程研究所碩士論文。 郭大方 (1995),"感潮河段污染擴散及流速分佈之研究",國立台灣海洋大學 河海工程研究所碩士論文。 蔡丁貴、王瑞雯、蘇青和 (2001),"河口海水入侵之數值模擬" 2001海洋數值模式研討會(民國九十年五月),p.15-1~15-21。 顏清連、王如意、朱紹鎔、許銘熙、呂建華、張守陽 (1984),"基隆河水理特性之研究",水利7203,國立台灣大學土木工程學研究所。 Blumberg, A. F., Ahsan, Q., Li, H., Kaluarachchi, I. D. & Lewis, J. K. (2001), "Circulation, sediment and water quality modeling in the northern Gulf of Mexico, Proceedings of the World Water and Environmental Resources Congress, Orlando, Florida." Blumberg, A. F. & Mellor, G. L. (1987), "A description of a three-dimensional coastal ocean circulation model. Three-dimensional coastal ocean Models, Heaps, N. S. (ed.), American Geophysical Union, pp.1~16. Bowden, K. F. & Hamilton, P. (1975), "Some experiments with a numerical model of circulation and mixing in a tidal estuary, " Estuarine and Coastal Marine Science, Vol. 3, No. 3. Casulli, V. & Walter, R. A. (2000), "An unstructured grid, three-dimensional model based on the shallow water equations," International Journal for Numerical Methods in Fluids, 32, pp.331-348. Chen, X. J. (2004), "A Cartesian method for fitting the bathymetry and tracking the dynamic position of the shoreline in a three-dimensional, hydrodynamic model," Journal of Computational Physics, 200, pp. 749-768. Chu, W. S., Barker, B. L. & Akbar, A. M. (1988), "Modeling tidal transport in the Arabian Gulf." Journal of Waterway. Port, Coastal and Ocean Engineering., ASCE, 114(4), 37-53. Dyer, K.R. (1977), "Lateral circulation effects in estuaries," Estuaries, Geophysics and the Environment, National Academic of Sciences, Washington. Dyer, K.R. (1989), Estuarine Flow Interaction with Topography: Later and Longitudinal Effects, pp. 39–60. Elliott, A.J. (1978), "Observations of the meteorological induced circulation in Potomac Estuary, " Estuarine and Coastal Marine Science, 6, pp. 285–299. Friedrichs, C.T. & Aubrey, D.G. (1994), "Tidal propagation in strongly convergent channels," Journal of Geophysical Research 99(C2), 3321-3336. Hansen, D. V. & Rattray, Jr. M. (1965), "Gravitational circulation in straits and estuaries," Journal of Marine Research, 23, pp.104-122. Hansen, D. V. & Rattray, Jr. M. (1966), "New dimensions in estuarine classification," Limnology and Oceanography, 11, pp319-326. Hansen, D. V. (1967), "Salt balance and circulation in partially mixed estuaries," In: Lauff, G. H. (ed.), Estuaries, American Associate Advance Science. Hass, L. W. (1977), "The Effect of the Neap-Spring Tidal Cycle of the Vertical Salinity structure of the Jams, York and Rappahannock Rivers, Virginia USA," Estuarine and Coastal Marine Science, 5, 485-496. Horrevoets A.C. & Savenije, H.H.G. (2004), "The influence of river discharge on tidal damping in alluvial estuaries," Journal of Hydrology, 294, 213-228. Ianuiello, J. P. (1977), "Tidally induced residual currents in estuaries of constant breadth and depth," Journal of Marine Research, 35, pp.735-786. Ippen, A.T. (1966), "Estuary and Coastline Hydrodynamics," Ford Professor of Engineering Director of Hydrodynamics Laboratory Department of Civil Engineering, Massachusetts Institute of Technology, p.493-522. Julien, P.Y., Klaassen, G.J., Ten Brinke, W.B.M. & Wilbers, A.W.E. (2002), "Bed Resistance of Rhine River during 1998 Flood," J. of Hydrauic Engineering, 12:1042-1050. Kuo, A. Y., Hamrick, J. M. & Sisson, G. M. (1990), "Persistence of residual currents in the James Estuary and its implication to mass transport," Coastal and Estuarine Studies, 38, pp.398-401. Kreiss, H. (1957), "Some Remarks about Non-linear Oscillations in Tidal Channels," Tellus, 9, p.53-68. Lan, C.W. & Lee, C. C. (2006), "Study of Bed Friction Factor in the Estuary of Wu River," China Ocean Engineering, Vol.20 No.4 2006 pp.557-572. Leendertse, J. J. (1967), "Aspects of a computational model for long-period water-wave propagation, " RM-5294-PR, Rand Corp. Santa Monica, California. Muin, M. & Spaulding, M. (1997), "Application of three-dimensional boundary-fitted circulation model to Providence River," Journal of Hydraulic Engineering, ASCE, 123(1), pp.13-20. Park, K. & Kuo, A.Y. (1992), "A Vertical Two-Dimensional Model of Estuarine Hydrodynamics and Water Quality," School of Marine Science Virginia Institute of Marine Science, College of William and Mary. Gloucester Point, VA 23062. Special Reports Applied Marine Science and Ocean Engineering No.321, p.6-7. Prandle, D., & Rahman, M. (1980), "Tidal response in estuaries," J. Phys. Oceanogr., 10, 1552-1573. Pritchard, D. W. (1952), "Estuarine hydrography. In: Advances in Geophysics," Vol. 1, Academic Press Inc. New York, NY, pp.243-280. Pritchard, D. W. 1954. "A study of the salt balance in a coast plain estuary," Journal of Marine Research, 13(1), pp.133-144. Pritchard, D.W. (1955), "Estuarine Circulation Patterns," Proc. ASCE, 81(717). Pritchard, D. W. (1956), "The dynamic structure of a coastal plain estuary," Journal of Marine Research, 15(1), pp.33-42. Pritchard, D.W. (1989), Estuarine Classification a Help or a Hindrance. Savenije, H.H.G. (1992a), "Rapid assessment technique for salt intrusionin alluvial estuaries," PhD thesis, IHE Report Series, No. 27.International Institute for Infrastructure, Hydraulics and Environment, Delft, The Netherlands. Savenije, H.H.G. (1992b), "Lagrangian solution of St Venant''s equationsfor an alluvial estuary," Journal of Hydraulic Engineering, ASCE 118 (8), 1153-1163. Savenije, H.H.G. (1993), "Determination of estuary parameters on the basis of Lagrangian analysis," Journal of Hydraulic Engineering, ASCE 119 (5), 628-643. Savenije, H.H.G. (1998), "Analytical expression for tidal damping in alluvial estuaries," Journal of Hydraulic Engineering 124 (6), 615-618. Savenije, H.H.G. (2001), "A simple analytical expression to describe tidal damping or amplification," Journal of Hydrology, 243, 205-215. Stelling, G. S., Wiersma, A. K. & Willemse, J. B. T. M. (1986) "Practical aspects of accurate tidal computations, " Journal of the Hydraulics Engineering, ASCE, Vol. 112, No. 9, September. Zhang, Y., Baptista, A. M. & Mayers, E. P. (2004), "A cross-scale model for 3D baroclinic circulation in estuary-plum-shelf system: I. Formulation and skill assessment," Continental Shelf Research, 24, pp.2187-221.
摘要: 感潮河段之水理變化受到海洋潮汐之漲落、河川逕流、水體密度之差異,甚至河相之特異性(如底床質、坡度、河段束縮等)之影響,由此可知感潮河段之水理變化至為複雜。本研究僅針對潮波在河口段於枯水期間,考慮因底床摩擦效應與地形變異產生之反射作用,探討其對河口水理變化之影響。 本研究採用Eulerian座標觀點,考慮潮波在感潮河段中之傳播,因底床摩擦效應而使潮波振幅衰減,及因河道束縮而反射壅昇之合併效應,就觀測之潮水位變化及流速資料,推估感潮河段之摩擦效應及反射效應。研究中分別以烏溪及基隆河為研究分析案例。經由全河段,全潮時觀測之水位資料及流速資料,依本研究所推導之部份反射波理論,可分別推估出河段之反射效應及摩擦效應。 因流速觀測資料欠缺,烏溪感潮河段分別以駐波及前進波理論分析,結果顯示烏溪感潮河段,其水理變化主要為摩擦效應所影響,而反射效應影響甚小,但無法確定其影響大小。就基隆河感潮河段進行分析,除依駐波及前進波理論分析外,因其觀測資料較為完整,並依本文所建立之部份反射波理論分析,經推估在百齡橋測站之潮波反射係數ω約為0.75(2005/6/22)及0.69(2006/9/13),結果顯示該感潮河段之反射波現象相當明顯,其推得相對應之曼寧係數n值分別為0.0410及0.0393 s/m1/3 。同時透過Savenije(1998)以Lagrangian為座標觀點之解析法來加以驗證,分析結果得其波型數sinε約為0.3 及0.36 (sinε = 0為全反射駐波),所推估之曼寧係數n值為0.0443 及0.0381 s/m1/3,與本研究依反射波理論分析結果相近。 感潮河段之流速推估,如依恆定均勻流之假設,以河面平均水力坡降,就實際觀測所得之流速資料反推其曼寧係數n值(以基隆河為例,分別為0.0415及0.0370 s/m1/3),結果與本研究方法所推估之n值相吻合。且透過本研究反射波理論所求得之推估值(反射係數ω、潮波波數k、阻尼模數μ),可正確地求解出河口段之瞬時水力坡降,依此水力坡降,則其引用之曼寧係數n值,適為反應河口段底床粒徑大小之n值。
The hydrodynamic characteristics in tidal reach because of be subjected to ocean tide it rise to fall, the river runoff and density current, even the influence of the particularity (as Bed material, Slope, Channel section convergent etc.) of morphology, thus it may be known hydrodynamic change of the tidal reach to for complex. This research aims at tidal wave only to consider to bed friction effect and reflection effect because of geography variation in Dry season in the estuary, discusses it to influence of estuary hydrodynamics change. This paper adopts Eulerian coordinates viewpoint, the incident wave progressing up to the estuary is considered to be a tidal wave amplitude reduction with friction effect, and tidal wave reflection rise up because channel section convergent of merge effects, tidal water level variety and tidal current velocity data using the observation, estimate the friction effects and reflection effect of tidal reach. The research in take the Wu River and Keelung River as analyze a case respectively. By way of the entire estuary, Whole tide water level and tidal velocity data of was observed hourly. Based on the Partial Reflection wave theories that this research deduces, can estimate reflection effect and friction effects of tidal reach respectively. Because tidal velocity observed data are lack, Wu river estuary respectively by the standing wave and progressive wave theoretical analysis, demonstrated finally Wu river estuary, its hydrodynamic characteristics mainly affects for the friction effect influence, but the reflection effect influence is really small, and unable to determine its influence degree. Carries on the analysis on the Keelung River tidal reach, besides depends on the standing wave and the progressive wave theoretical analysis, because its observed data are more complete, and part of reflected wave theoretical analysis according to this article establishment, after pushes estimates tidal wave of reflection coefficient ω is about 0.75(2005/6/22) and 0.69(2006/9/13) in Bailing-Bridge station, finally demonstrated that reflected wave of phenomenon this estuary is quite obvious, it pushes respectively corresponds Manning the coefficient n value is 0.0410 and 0.0393 s/m1/3. Simultaneously penetrates Savenije(1998) as analysis of law the coordinate viewpoint comes take Lagrangian to confirm, the analysis result its wave- type number sinε is approximately 0.3 and 0.36 (sinε = 0 for the total reflection standing wave), Estimates Manning coefficient n value is 0.0443 and 0.0381 s/m1/3, depends on the Partial Reflection wave theoretical analysis result with this research to be close. Estimate of tidal current velocity for Keelung River estuary, as depend on Steady Uniform flow of assumption, take the river surface average hydraulic slope, Apply on-site observation obtained tidal velocity calculates its Manning coefficient n value (by Keelung River as example, respectively is 0.0415 and 0.0370 s/m1/3 ), its result with this paper method estimate value to be close . And through this paper estimate values by Partial Reflection wave theories (Reflection coefficient ω , Tidal wave number k and Damping modulus μ ), can solve accurately instant hydraulic slope in the tidal reach ,according to this hydraulic slope, it then quotes from of Manning coefficient n value, proper for respond the n value of the bottom bed particle size in estuary.
URI: http://hdl.handle.net/11455/15615
其他識別: U0005-2408200713573700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200713573700
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.