Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15638
標題: 爐石顆粒粗細對高性能混凝土抗壓強度及脆裂韌性之影響
Effects of Slag Siges on Compressive Strength and Toughness of High Performance Concrete
作者: 蔡其德
Cai, Ji-De
關鍵字: pozzolanic materials
卜作嵐材料
slag
fracture toughness
failure modes
爐石
破裂韌性
破壞模式
出版社: 土木工程學系所
引用: 參考文獻 1. 顏聰、陳冠宏、張朝順、吳秋濃,2002.07, 「以飛灰取代水泥對高強度高性能混凝土質流性質之影響」,新世紀海峽兩岸高性能混凝土研究與應用學術會議論文集,上海同濟大學,pp. 37-42。 2. 廖東昇,「飛灰與強塑劑對高性能混凝土工程性質影響之研究」,國立臺灣科技大學 營建工程所博士論文,2005年。 3. 黃乃明,「不同礦物摻料對高性能混凝土性質影響之研究」,國立台北科技大學土木與防災技術研究所碩士論文,2003年。 4. Hillerborg, A., “The Theoretical Basis of a Method to Determine the Fracture Energy GF of Concrete,” Materials and Structures, Vol.18, pp.291-296, 1985. 5. P. E. Petersson, “Fracture Energy of Concrete: Practical Performance and Experimental Results,” Cement and Concrete Research, Vol. 10, 1980, pp. 91-101. 6. RELIM Committee on Fracture Mechanics of Concrete – Test Methods, “Determination of the Fracture Parameters (KSIC and CTODC) of Plain Concrete Using Three-Point Bend Tests,” Materials and Structures, Vol. 23, 1990, pp. 457-460. 7. Swartz, S.E., and Yap, S.T., “The influence of dead load on fracture energy measurements using the RILEM method,” Materials and Structures, Vol.21, pp.410-415, 1988. 8. 苗伯霖,「新型高性能超高強建築材料-活性粉混凝土」,營建知訊,第162 期,第52-60 頁(1996)。 9. 陳振川,「高性能混凝土規劃與推動」,高性能混凝土研發及應用研討會論文輯,第1-44頁,高雄市(1994). 10. 蘇南,「21世紀TAICON台灣混凝土之配比設計」,高性能混凝土配比設計實作研討會論文集,台北市,第46頁(1998). 11. ASTM C1707-92,”Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete”,1992. 12. 黃兆龍,混凝土性質與行為,詹氏書局,台北市(1999). 13. 黃兆龍,李隆盛,”高性能混凝土力學性質分析”,高性能混凝土研討會論文集,第1-1至1-24頁,民國八十八年九月。 14. Pauw,A.,”Statuc Modulus of Elasticity of Concrete as Affected by Density”,Proceeding,ACI,Vol1.57,NO.12,1960,pp.679-687. 15. 廖正彥,”高飛灰與爐石含量對混凝土之力學性質的影響”,碩士論文,國立中興大學土木工程研究所,民國八十六年。 16. Mindess,S.; and Young,J.F.,”Concrete”,Prentice-Hall,N.J.1981. 17. Lesile,K.E.;Rajagopalan,K.S.;and Everard,N.J., ”Flexural Behavior of High Strength Concrete Beam” , ACI Journal, Sept, V.73, No.9, 1976, pp.517-521. 18. Discussion By Ghosh,S.K.; Chandrasekhar,C.S.; Mahmood,K.;Wang,F; Shah,S.P.;and Naanian ,A.E., ” Flexural Behavior of High-Strength Concrete Beams”,ACI Journal,March 1977,pp.140-145. 19. Wang,P.T.;Shah,S.P.;and Naanian,A.E.,”High Strength Concrete in Ultimate Strength Design”,ASCE,V.104 ST11,1978,pp.1761-1773. 20. Lea, F.M., ”The Chemistry of Cement and Concrete”, Edward Arnold Ltd London, (1980). 21. Derucher K.N., and C.P. Heins, ”Materials for Civil and Highway Engineers”, (1981). 22. 黃兆龍,「高爐熟料在水泥上之利用」,現代混凝土技術研討會,台灣營建研究中心,pp.162-177,台北(1984)。 23. 楊明恭,「中鋼公司高爐熟料之生產及品管狀況簡介」,卜特蘭水泥摻用高爐熟料研討會講義,pp.30-39,台北(1984)。 24. 黃煥彩,林平全,張東源,「中鋼轉爐石資源化處理及利用情形」,鋼鐵工業爐渣資源化再利用實務研討會論文集,台南(2002)。 25. 中央標準局,「CNS中國國家標準」,(1993)。 26. 黃兆龍,王和源,沈得縣,蘇南,林維明,林平全,「公共工程混凝土使用爐石水泥之可行性評估」,專案計畫報告,行政院公共工程委員會,台北(1999)。 27. P. K. Mehta and Paulo J. M. Monteiro, “Concrete: Structure, Properties, and Materials”,Prentice-Hall, Eeglewood Cliffs, N. J.(1993). 28. 湯兆緯、陳冠宏、張朝順編譯,「土木材料」,高立圖書公司,民國91年9月出版。 29. 行政院公共工程委員會主編,「公共工程高爐石混凝土使用手冊」,民國90年11月出版。` 30. 周文宗,劉啟印「HPC參料的應用技術」,高性能混凝土研發實務研討會論文集,民國85年出版。 31. 林炳炎,”飛灰、矽灰、高爐爐石用在混凝土中”,三民書局,民國82年。 32. 黃君雄,”爐石資源化與管理”,資源廢棄物回收再利用管理論文集,行政院環境保護署,民國87年。 33. 魏敬楨,”飛灰與爐石含量對高性能混凝土工作性及強度的影響”,國立中興大學碩士論文,民國85年。
摘要: 本文主旨在探討卜作嵐材料(爐石)粗細程度對高性能混凝土抗壓強度與破裂韌性(fracture toughness)之早期及晚期影響。混凝土非為均質材料,較無固定的力學性質,尤其近年來添加卜作嵐材料(爐石)之高性能混凝土,現已廣泛應用於各種工程上,因此針對爐石之細度及取代率問題有研究之必要性。本研究以試驗方法為主,試驗時高性能混凝土採用水膠比0.35,爐石取代水泥量為20%、40%,爐石細度分別為4000、5000及6000 cm2/g,並於齡期7天、14、28天及56天進行相關試驗。本研究以三點彎矩試驗來測量預裂樑的最大載重,再根據量測的載重與變形關係,可以計算出破裂能量(GF)值,以此值來代表混凝土破裂韌性大小,最後也以場發式電子顯微鏡(SEM)觀察不同爐石細度、取代率、齡期之微觀差異。 試驗結果顯示,爐石細度愈細,其活性愈佳,不論取代20%水泥或40%水泥,均顯示早期(7天)強度及破裂能量值之發展愈好;在早齡期(7天)時,不論何種細度之爐石,取代率為20%之混凝土,其早期強度發展或早期破裂能量值的發展都比取代率為40%者佳,這是由於混凝土早期強度主要靠水泥的水化反應,故取代水泥愈多,能參與水化反應的水泥減少,早期強度會較差。晚齡期之強度與破裂能量值較不受爐石細度與爐石取代量所影響,因為混凝土中的水化或卜作嵐反應,皆已趨於穩定。從微觀(SEM)來看,齡期56天時在水化反應與卜作嵐反應較完全之作用下,混凝土內部晶相結構更加緻密,孔隙孔徑較14天時小,平面結構持續形成,且有更多的C-S-H膠體產生,其界面結構較緻密,且微裂縫明顯減少。 關鍵詞:卜作嵐材料、爐石、破裂韌性、破壞模式
This project is to study the effect of the finess of pozzolanic material on the fracture toughness of high performance concrete. The concrete which is not a uniform materials has unfixed mechanics quality. High performance concrete which include pozzolanic material(slag)is applied broadly to all kind of construction. It is necessily to study problem about the slag how to replace and what kind of finess. All the this study is based on tests. The following parameters were adopted in the first year's tests: water paste ratio: 0.35, substitution rate: 20% and 40%, finess of the slag: 4000, 5000 and 6000 cm2/g. A value called GF based on 3-point bending test is adopted to represent the fracture toughness. At last,observe the micromechanism of concrete about different substitution rate, finess of the slag and different age by using SEM. The test result reveals, the thinner finess of slag is, the better its activity is. No matter replace 20% of the cement or 40% of the cement, reveal HPC has better the development of strength and GF value in early. Whether which kind of finess of the slag,the concrete replacing as 20% of the cement, strength and GF value of it the developments the getting better as 40% than that of replacing more rate energy in early days, this is because the early intensity of concrete mainly reacts by water of the cement, so replace cement more, can participate in water cement reacting to reduce, the early intensity will be relatively bad. It is late intensity of one and break-up energy value are not influenced with the replacing amount of stone of the stove by the detailed degree of stone of the stove age, because water of concrete divine, make haze react, all already tend towards stability. From the microcosmic (SEM) Come, look, react and divine, make haze it reacts to be over under the the whole function relatively in water at the will it be 56 days age, the brilliant looks structure is more dense within the concrete, the hole aperture is smaller than on 14 days, the level structure takes shape continuously, and there is more C-S-H colloid to emerge, its structure of interface is relatively dense, and the little crack is obviously reduced. Keywords: pozzolanic materials, slag, fracture toughness, failure modes.
URI: http://hdl.handle.net/11455/15638
其他識別: U0005-2708200712192000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708200712192000
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.