Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15654
標題: 孤立波底部邊界層流場特性之實驗研究
Experimental Study on the Characteristics of Bottom Boundary Layer Flow Induced by a Solitary Wave
作者: 黃彥霖
Huang, Yan-Lin
關鍵字: Soiltary wave
孤立波
boundary layer
邊界層
出版社: 土木工程學系所
引用: 1. Cowen, E. A. and Monismith, S. G., 1997. “A hybrid digital particle tracking velocimetry technique,” Experiments in Fluids,” Vol. 22, No. 199-211. 2. Cowen, E. A., Sou, I. M., Liu, P. L.-F. and Raubenheimer B., 2003. “Particle image velocimetry measurements within a laboratory-generated swash zone,” J. Eng. Mech., Vol. 129, pp. 1119-1129. 3. Daily, J. W. and S. C. Stephan , Jr. (1953) “Characteristics of the solitary wave.”Trans. ASCE, vol.118. 4. Huang, C. J. and Dong, C. M., 2001. “The interaction of a solitary wave and a submerged dike,” Coastal Eng., Vol. 43, pp. 265-286. 5. Heller, V., Unger, J. and Hager, W., 2005. ”Tsunami Run-up—A Hydraulic Perspective,” J. of Hydraulic Eng., ASCE, pp. 743-747. 6. Ippen, A. T. and Mitchell, M. M., 1957. “The damping of the solitary wave from boundary shear measurements,” Tech. Report, Hydrodynamics Laboratory, No. 23, Massachusetts Institute of Technology. 7. Jensen, B.L., Sumer, B. M., and Fredsoe, J., 1989. “Turbulent oscillatory boundary layers at high Reynolds numbers,” J. Fluid Mech., Vol. 206, pp. 265-297. 8. Keulegan, G. H., 1948. “Gradual damping of solitary wave,” J. Res. Natl. Bur. Standard Vol. 40, pp. 607-614. 9. Liu, P. L.-F., Al-Banna, K. A., Cowen, E. A., 2004. “Water wave induced boundary layer flows above a rippled bed,” Advances in Coastal and Ocean Engineering: PIV and Water Waves, Vol. 9, pp. 81-117. 10. Liu, P. L.-F. and Orfila A., 2004. “Viscous effects on transient long-wave propagation,” J. Fluid Mech., Vol. 520, pp. 83-92. 11. Lin, C., Ho, T. C., Chang, S. C., Hsieh, S. C., and Chang, K. A., 2005: Vortex shedding induced by a solitary wave propagating over a submerged vertical plate, International Journal of Heat and Fluid Flow, Vol. 26, pp. 894-904 . 12. Liu, P. L.-F., Simarro, G., VanDever, J., and Orfila, A., 2006. “Experimental and numerical investigation of viscous effects on solitary wave propagation in a wave tank,” Coastal Eng., Vol. 53 (2/3), pp. 181-190. 13. Liu, P. L.-F., Park, Y. S. and Cowen, E. A., 2007. “Boundary layer flow and bed shear stress under a solitary wave,” J. Fluid Mech., vol. 574, pp. 449-463. 14. Mei, C. C., 1983. “The Applied Dynamics of Ocean Surface Waves,” John Wiley & Sons. 15. Ott, E. and Sudan, R. N., 1970. “Damping of solitary waves,” Phys. Fluids, Vol. 13, pp. 1432. 16. Tanaka, H., Sumer, B. M., Lodahl, C., 1998. ”Theoretical and experimental investigation on laminar boundary layers under cnoidal wave motion,” Coastal Eng. Vol. 40, pp.81-98. 17. 林 呈 : 應用流場可視化法及LDV探討斜坡上波動內部流場及底部邊界層之特性,國立成功大學水利及海洋工程研究所博士論文,1989。 18. 林 呈、鄭中南、顏光輝、蔡清標,1996:層流波動邊界層之速度量測與底部剪應力之評估探討,中華民國力學期刊,Vol. 12, No. 2, pp. 267- 278。 19. 鄭中南:波動底部邊界層特性之實驗探討,國立中興大學土木工程研究所碩士論文,1996。 20. 張淞傑:應用流場可視化與PIV技術於孤立波通過淺堤周邊渦流流場之研究,國立中興大學土木工程研究所碩士論文,2004。 21. 張錦鑲:用流場可視化與PIV系統於孤立波通過對稱穴槽之渦流特性研究,國立中興大學土木工程研究所碩士論文,2006。 22. 謝世圳:單圓柱尾流流場特性之實驗研究,國立中興大學土木工程研究所博士論文初稿,2007。
摘要: 本研究旨在應用高速PIV技術於孤立波通過水平與傾斜底床邊界層流場量測之實驗研究,本實驗研究首先以高速PIV及傳統PIV量測系統分別對均勻來流平板邊界層速度場進行測試,經測試後發現以高速PIV量測技術能有效解決傳統PIV在近邊界層速度量測效果不佳之情況,如底部泛光、空間與時間解析度不足的問題。遂應用此量測分析技術於孤立波底部邊界層速度量測,實驗進行係以高速PIV配合雙波高計針對水深7 cm、波高1.1 cm之實驗條件下,量測孤立波通過水平及傾斜底板(斜率1/10)之底部邊界層速度剖面。然而為檢測高速PIV速度量測結果之正確性,本研究將FLDV於水平底床邊界層速度量測結果與高速PIV之結果加以驗證比較,經由分析結果顯示高速PIV具有良好之精確性。 根據實驗結果,應用高速PIV於水平底床邊界層速度量測能得到極佳的結果,經由無因次分析邊界層速度剖面能找到一條水平底床邊界層的無因次相似性速度剖面。另者,孤立波的邊界層速度於淺化過程中正向與負向的極值速度有逐漸增加的趨勢產生。另一方面由於在近底板處邊界層速度具有極佳的空間解析度,因此能藉以進行底床的剪力分析。
The object of this paper is to study experimentally the bottom boundary layer flow under a solitary wave propagating over either a horizontal or a sloping bottom. The wave height, H, is 1.1 cm and the water depth, h, is 7 cm. The slope of sloping bottom is 1/10. The particle image velocimetry (PIV), and laser Doppler velocimetry (LDV) were used to obtain quantitatively velocity distribution of the boundary layer flow. Particle trajectory photography was also used for flow visualization to observe flow fields near the bottom boundary. The PIV was based on phantom camera and Ar+ laser system. Image processing techniques are utilized in the study to improve time and space resolution of PIV system. The effects of glare at the bed are reduced by using High pass filter (Edge Laplacian 5 5 method). The boundary layer flow near a plane boundary with uniform incoming flow was tested first using this system. The result obtained is much better than the traditional PIV. Furthermore, this technique was used to measure the boundary layer under a solitary wave near either a horizontal or a sloping bottom. The velocity distribution near the horizontal bottom was compared with that obtained by FLDV. The PIV system and image processing technique are proved to be successfully applied for the measurement of boundary layer flow. Finaly, the boundary characteristics under a solitary wave were investigated. It is find that: (1)The similarity profile of the velocity distribution of boundary layer flow was obtained near horizontal bottom. (2) The maximum value of positive and negative horizontal velocity increases gradually with the decrease of the water depth in the shoaling process. (3) The space resolution of PIV data is tiny enough to estimate the bed shear stress by calculating velocity gradient of the horizontal velocity near the bed.
URI: http://hdl.handle.net/11455/15654
其他識別: U0005-2808200700030300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200700030300
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.