Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15656
標題: 彰雲嘉地區土壤液化潛能與地工分區之研究
The study of soil liquefaction potential and geotechnical zonation in Changhua, Yunlin and Jiaya area
作者: 陳宗佑
Chen, Zong-You
關鍵字: liquefaction
液化
liquefaction potential
geotechnical zonation
液化潛能
地工分區
出版社: 土木工程學系所
引用: 1. 吳偉特(1979),「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第6卷,第2期,第39-70頁。 2. 吳偉特、楊騰芳(1987),「細料含量在不同程度影響因素中對台灣地區沈積砂土液化特性之研究」,土木水利,第14卷,第3期,第59-74頁。 2. 吳培琮(2004),「應用室內剪力波速法評估礫石土液化潛能之研究」,國立中興大學土木工程學系碩士論文,台中。 4 李仁森(2001),「台中卵礫石土於反覆單剪儀下動態性質之研究」,國立中興大學土木工程學系碩士論文,台中。 5. 李怡穎(2001),「員林地區土壤動態特性之探討」,國立臺灣大學土木工程學系碩士論文,台北。 6. 李咸亨、陳慧慈(1997),「液化與地震災害」,國家地震工程研究中心簡訊,第21期,第1-5頁。 7. 李崇正、盛若磐、林錦宏(1989),「單剪之砂土變形行為研究」,行政院國家科學委員會專題研究計畫成果報告,NSC 77-0410-E008-10。 8. 李煜舲(1988),「飽和砂土液化特性與孔隙水壓預估之研究」,國立交通大學土木工程學系碩士論文,新竹。 9. 亞新工程顧問股份有限公司(2000),「南投、霧峰地區土壤液化調查研究」,行政院國家科學委員會。 10. 經濟部中央地質調查所地質資料整合查詢系統http://www.moeacgs.gov.tw/main.jsp 11. 楊貴山、馮鈺棋,2005,『嘉義地區活動斷層之地形學研究』,地理研究期刊,第42期,第5頁。 12. 劉憲德,1995,「彰化濱海平原地層下陷模擬研究」,碩士論文,國立中興大學土木工程研究所。 13. 陳勉銘、陳華玟、林啟文、黃存慧,2002,「活動斷層調查報告-彰化斷層」,經濟部中央地質調查所施政計畫報告。 14. Delcaillau, B., Deffontaines, B., Floissac, L., Angelier, J., Deramond, J., Souquet, P., Chu, H. T., Lee, J. F., 1998, Morphotectonic evidence from lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan. Geomorphology, v. 24, 263-290. 15. Amer, M.L., Aggour, M.S., Kovacs, W.D., (1986), "Testing Using a Large-scale Cyclic Simple Shear Device", Geotechnical Testing Journal, Vol. 9, No. 3, pp. 140-146. 16. Andrus, R.D., Stokoe II, K.H., (2000), "Liquefaction Resistance of Soils from Shear-Wave Velocity", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp. 1015-1025. 17. ASTM Standard D4254-91, (1993), "Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density", Annual Book of ASTM Standards, American Society for Testing and Materials, Vol. 04.08, pp. 674-681. 18. ASTM Standard D4259-93, (1993), "Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table", Annual Book of ASTM Standards, American Society for Testing and Materials, Vol. 04.08, pp. 661-673. 19. Atkinson, G.M., Finn, W.D.L., Charlwood, R.G., (1984), "Simple Computation of Liquefaction Probability for Seismic Hazard Applications", Earthquake Spectra, Vol. 1, No. 1, pp. 107-123. 20. Bjerrum, L., Landva, A., (1966), "Direct Simple Shear Tests on a Norwegian Quick Clay", Geotechnique, Vol. 16, No. 1, pp. 1-20. 21. Chang, N. T., Yeh, S. T., and Kaufman, L. P. (1982), “Liquefaction potential of clean and silty sands,” Proceeding of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032. 22. Castro, G., (1975), "Liquefaction and Cyclic Mobility of Saturated Sands", Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT6, Proc. Paper 11388, pp. 551-569. 23. Christian, J.T., Swiger, W.F., (1975), "Statistics of Liquefaction and SPT Results", Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. 11, pp. 1135-1150. 24. Chung, K.Y.C., Wong, I.H., (1982), "Liquefaction Potential of Soils with Plastic Fines", Soil Dynamics and Earthquake Engineering Conference, Southampton, Great Britain, pp. 887-897. 25. De Alba, P., Baldwin, K., Janoo, V., Roe, G., Celikkol, B., (1984), "Elastic-Wave Velocities and Liquefaction Potential", Geotechnical Testing Journal, ASTM, Vol. 7, No. 2, pp. 77-88. 26. De Alba, P., Seed, H.B., Chan, C.K., (1976), "Sand Liquefaction in Large-Scale Simple Shear Tests", Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT9, Proc. Paper 12403, pp. 909-927. 27. Douglas, B.J., Olsen, R.S., (1981), "Soil Classification Using Electric Cone Penetrometer", Cone Penetration Testing and Experience, St. Louis, Proceedings of the ASCE National Convention, ASCE, pp. 209-227. 28. Dyvik, R., Madshus, C., (1985), "Lab Measurements of Gmax using Bender Elements", Proceedings, Advances in the Art of Testing Soils under Cyclic Conditions, Detroit, MI, Geotechnical Engineering Division, pp. 186-196. 29. Evans, M.D., (1992), "Density Changes During Undrained Loading - Membrane Compliance", Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 12, pp. 1924-1936. 30. Evans, M.D., Seed, H.B., Seed, R.B., (1992), "Membrane Compliance and Liquefaction of Sluiced Gravel Specimens", Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 6, pp. 856-872.
摘要: 九二一地震時台灣中部地區發生大規模之土壤液化現象,造成嚴重財產損失,有鑑於此,本研究以等值線之概念,配合數種液化分析方法,評估彰雲嘉地區之液化潛能,以繪製此區之液化潛能分區圖,並使用蒐集之鑽孔地層資料,進行地工分區的劃設。 本研究主要目的為建立彰雲嘉地區液化潛能分區,以Seed 分析法(1997)、Tokimatsu & Yoshimi (T-Y)分析法、新日本道路橋(NJRA)建議分析法加以驗證,接著利用Iwasaki 深度加權法評估,以建立彰雲嘉地區液化潛能分區圖;另外考量沉積環境、沉積物特性與地盤強度,劃分地工分區,以對研究區域之工程地質狀況與地工特性作一整體之規劃與掌握。 研究成果顯示,彰雲嘉地區之可能主要液化範圍,分布於西部沿海之濁水溪沖積平原區,其土層之粒徑大小落在較易液化之粒徑範圍,於豐水期時,地下水位較高,相對其液化潛能亦較高,此時須留意可能液化災害之影響,綜合資料收集結果,彰雲嘉地區依地形特徵、水系發育、沉積環境與地層分佈特性,分為大肚溪沖積平原區、彰化海岸隆起平原區、濁水溪沖積平原區、斗六沖積扇區、北港溪海岸隆起平原區與朴子溪海岸隆起平原區等六個工程地質區。
URI: http://hdl.handle.net/11455/15656
其他識別: U0005-2808200711165200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200711165200
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.