Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15657
標題: 棧橋式碼頭受震反應之數值模擬研究
Numerical Simulations of Seismic Response for Pile Wharf
作者: 鄭光廷
Cheng, Kuang-Ting
關鍵字: Liquefaction
土壤液化
Pile foundation
Pile wharf
樁基礎
棧橋式碼頭
出版社: 土木工程學系所
引用: 1. 國家地震工程研究中心 (2000), “921集集大地震大地工程災害調查報告” 2. 賴聖耀、李豐博、蘇吉立、陳志芳(2002),”港灣地區地震監測與土壤液化潛能評估之研究”,交通部運輸研究所,中華民國九十一年二月。 3. 張文忠、許晉銘 (2005) “現地土壤液化試驗之發展與應用” 第十一屆大地工程研討會。 4. 李佳翰(2001),「沉箱式碼頭受震引致土壤液化之數值模擬」,碩士論文,中央大學應用地質研究所。 5. 馬志睿(2000),「沉箱式碼頭受震反應之數值模擬」,碩士論文,中央大學土木工程研究所。 6. 港灣技術研究中心(1999),”台中港1至4A碼頭921地震液化災損出步調查研究”,專刊172。 7. 黃俊鴻、楊志文、譚志豪、陳正興 (1990) “集集地震土壤液化之調查與分析” 地工技術 NO.77 p.51-64 8. 褚炳麟、張益銘、陳冠閔、徐松析、張錦銘 (1990) “921地震霧峰、太平地區液化及下陷調查分析”地工技術 NO.77 p.19-28 9. 翁作新、褚炳麟、林炳森 (1990) “員林、霧峰及南投地區土壤液化特性”地工技術 NO.81 p.17-23 10. 黃俊鴻、陳正興 (1998) “土壤液化評估規範之回顧與前瞻”地工技術NO.70 p.23-44 11. 陳正興等 (2004) “土壤液化對交通結構物之影響及液化潛能評估方法與災害分析模式之研究(1/2),交通部運輸研究所,中華民國九十三年十二月。 12. Ashford, S.A., Weaver, T.J., and Rollins, K.M. (2002) "Pore Pressure Response of Liquefied Sand in Full-Scale Lateral Pile Load Tests." Transportation Research Record 1808, Transportation Research Board, p. 21-29 13. Boulanger, R.W., Curras, C. J., Kutter, B.L., Wilson, D.W., and Abghari, A. (1999), “Seismic Soil-Pile-Structure Interaction Experiments and Analyses, “Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 9. pp.750-759. 14. Chang, W.-J. (2002) Development of an In Situ Dynamic Liquefaction Test, Ph.D. Dissertation, University of Texas, Austin, TX, USA. 15. Chang, W. J., Rathje, E. M., Stokoe, K. H. II, Cox, B. R. (2004), “Direct Evaluation of Effectiveness of Prefabricated Vertical Drains in Liquefiable Sand,” Soil Dynamics and Earthquake Engineering. Vol. 24/9-10, pp 723-731. 16. Dobry R and Abdoun T (1998),"Post-triggering Response of Liquefied Sand in the Free-field and Near Foundations," Proc.of ASCE Specialty Conf.on Geotech,Earthquake Engrg.and Soil Dyn.,Vol.1:270-300,Seattle,WA,ASCE 17. Finn. W.D.L. and Fujita, N. (2002), “Piles in liquefiable soils: seismic analysis and design issues,” Soil Dynamics and Earthquake Engineering. Vol. 22/9, pp 731-742. 18. Klar, A. and Frydmn, S. (2002), “Three-Dimensional Analysis of Lateral Pile Response using Two-Dimensional Explicit Numerical Scheme,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 9. pp.775-784. 19. Liyanapathirana, D.S. and Poulos, H. G. (2005), “Pseudostatic Approach for Seismic Analysis of Piles in Liquefying Soil,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 12. pp.1480-1487. 20. Lysmer, J. and Kuhlemeyer, R. L. (1969), ‘‘Finite dynamic model for infinite media,’’ J. Eng. Mech. Div., 95(EM4), pp. 859–877. 21. Tokimatsu K (1999),"Performance of Pile Foundations in Laterally Spreading Soils," Seco e Pinto,2nd Intl.Conf.on Earthquake Geotech.Engrg,3:957-964.Balkema,Rotterdam. 22. Tokimatsu, K., Mizuno, H., and Kakurai, M. (1996). “Building damage associated withgeotechnical problems.” Special Issue of Soils and Foundations, Japanese Geotechnical Society, 219-234. 23. Rathje, E. M., Chang, W. J. and Stokoe, K. H. II (2005), “Development of an In Situ Dynamic Liquefaction,”, ASTM Geotechnical Testing Journal, Vol. 28, No. 1, pp.65-76. 24. Rollins, K. M., Gerber, T. M., Lane, J. D., and Asford, S.A. (2005). “Lateral Resistance of a Full-Scale Pile Group in Liquefied Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 1. pp.115-125. 25. Yang, Z., Elgamal, A., and Parra, E., (2003). "A Computational Model for Liquefaction and Associated Shear Deformation," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 12. 26. Zienkiewicz, O. C., Chan, A. H. C., Pastor M., Paul, D. K., and Shiomi T. (1990), “Static and dynamic behaviour of geometerials – a rational approach to quantitative solutions, part-1 fully saturated problems,” Proc. Royal Society of London, A429, pp. 285-309.
摘要: 港灣及海岸地區之結構物常採用樁基礎設計,當其受地震力作用時,需考慮土壤-樁基礎-上部結構系統於液化前後之動態互制反應,以作為進行結構設計、安全評估與研擬防制對策之參考。 本研究收集並整理現有土壤-樁基礎-結構互制行為相關之文獻與分析方法,並以有效應力動態分析(effective stress-based dynamic analysis)程式,進行考慮土壤非線性與孔隙水壓激發行為且可模擬基樁與上部結構之動態數值分析。數值分析時所需之動態參數以現地鑽探取樣之試體,由反覆單剪儀進行土壤動態與液化試驗,並以非破壞性現地剪力波速量測結果,建立簡化之地質模型,並推估現地土壤在不同剪應變震幅下之動態特性,同時利用現地地表簡諧震源震動試驗量測之地盤震動與孔隙水壓力耦合反應,以驗證數值分析結果。 研究結果顯示現地土壤在液化區其土壤位移量最大,但在基樁周圍其位移量很小,表示基樁對周圍土壤具束制作用,且因其彼此影響,在此區之基樁其彎矩相對較小,而液化區之土壤其彎矩有增加之情形,而樑元素最大之彎矩亦發生在與液化回填砂土接觸之部份。
URI: http://hdl.handle.net/11455/15657
其他識別: U0005-2808200711393700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200711393700
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.