Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15707
標題: 水中養護對於火害後混凝土之強度與波速的影響
Application of the Stress-Wave Methods to evaluation of the Strength of Post-Fire-Curing Concrete
作者: 金佑任
chin, yu-jen
關鍵字: Post-Fire-Curing
火害
Stress-Wave Methods
水中養護
波速強度
出版社: 土木工程學系所
引用: 參考文獻 1. Sidney Mindess, J.Francis Young, “Concrete”, 1981。 2. 黃兆龍,”高等混凝土技術”,國立台灣工業科技學院教案, 1992。 3. Zermin C., Wolfgang,”Cement Chemistry and Physics for Civil Engineers”,1980。 4. 嚴順然,”火害後再水化對高性能混凝土性質之影響”,國立台灣科技大學碩士論文,1995。 5. K.-Ch. Thienel, F. S. Rostasy, “Transient creep of concrete under biaxial stress and high temperature”, Cement and Concrete Research, Vol. 26, 1996, pp.1409-1422 6. Igor Stubna, Anton Trnik, Libor Vozar, “Thermomechanical analysis of quartz porcelain in temperature cycles”, Ceramics International, Vol.33, 2007, pp.1287-1291 7. A. V. Zharikov, E. B. Lebedev, A. M. Dorfmon, V. M. Vitovtova, “Effect of saturating composition on the rock microstructure, porosity, permeability and Vp under high pressure and temperature”, Phys. Chem. Earth(A), Vol. 25, 2000, pp.215-218 8. 沈進發, 陳舜田, 林尚賢,”以X射線繞射試驗法推測混凝土受火害程度之研究”, 國立台灣工業技術學院碩士論文, 1991。 9. 張郁慧,”火害延時對混凝土材料性質之影響”, 國立台灣工業技術學院碩士論文,1993。 10. ASTM,”Standard Test Methods for Fire Test of Building Construction and Materials”,ASTM Committee E119-98,American Society for Testing and Materials,April 1998。 11. Lea, F.M.,”The Chemistry of Cement and Concrete”, Edward Arnold Ltd, London, 1980。 12. Malhotra H.L.,”Design of Fire-ResistingStructures”,1976。 13. Castillo Carlos and Durrani A. J. ,”Effect of Transient High Temperature on High-Strength Concrete”, ACI Materials Journal ,Title no. 87-M7 ,Janurnal- February 1990。 14. Abrams M.S.,”Compressive Strength of Concrete, at Temperatures to 1600℉”, Temperature and Concrete, ACI publication SP25, 1968。 15. G.A. Khoury,”Compressive Strength of Concrete at High temperatures: a reassessment”, Magazine of Concrete Reseach, 1992, pp.291-309。 16. Bye, G.C.,”Portland Cement-Composition, Production and Properties”, Published on Behalf of the institute of Ceramics, New York, 1983。 17. Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong,” Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures”, Cement and Concrete Research ,Volume: 31, Issue: 9, September, 2001, pp. 1291-1300。 18. 顏聰,”混凝土火害後之材料性質”,混凝土結構火害研討會, 國立中興大學土木學系與國立台灣科技大學營建工程技術系,民國86 年12 月。 19. 楊旻森,”壓力作用下混凝土材料受火害後之行為”, 國立台灣工業技術學院碩士論文, 1990。 20. Mohamedbhai,G.T.G.,”Effect of exposure time and rates of heating and cooling on residual strength of heated concrete”,Magazine of Concrete Research,vol.38,No.136,September 1986,pp.151-158。 21. 蔡佐良,1998,”火害延時與溫度對混凝土強度之綜合影響──溫時分析法”中華民國第四屆結構工程研討會論文集(一),頁547~554,台北。 22. 顏聰,”構造物高溫作用後藉超音波評估其混凝土受損程度之研究”,土木水利,第九卷,第三期,民國71年11月。 23. 高金盛,沈進發,陳舜田,”混凝土火害溫度之綜合評估”,第二屆結構工程研討會論文集(I),49~59頁,南投日月潭,台灣,民國83年。 24. 襲人俠,”水泥化學概論”, 台灣區水泥工業同業公會, 1980。 25. Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong,”Strength and durability recovery of fire-damged concrete after post-fire-curing.”Cement and Concrete Research, Volume: 31, Issue: 9, September, 2001, pp. 1307-1318。 26. Barnes p.,”Structure and Performance of Cement”, Applied Science Publishers, N.J., 1983。 27. Metha P.K.,”Concrete-Structure, Material, and Properties”, Prentice Hall, Englewood Cliffs, N.J., 1986。 28. Endell, K.,”Influence of High Temperatures on Hardened Cement , Aggregate , and Concrete ( Uber die Einwirkung Hoher Temperaturen auf erharteten Zement , Zuschlagstoffe und Beton )” Zement ( Berlin ) , No.45 , pp.823-929 , 1926。 29. 張范宏,”以縱波波速評估高性能混凝土強度之研究”,國立中興大學,碩士論文,民國85年6月。 30. 劉建佑,”非破壞檢測之波速量測法應用於火害混凝土波速與強度關係之探討”,國立中興大學碩士論文,2004。 31. Hsiao C., Yang, H., Lin Y., and Lin, Y.F., 2008, “The effect of post-fire-curing on strength-velocity relationship for nondestructive assessment of fire-damaged concrete strength,” submitted to Cement and Concrete Composites, May 2008. 32. Yang, H., Lin Y., Hsiao C., and Liu, J.Y., 2008, “Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity,” Fire Safety Journal, in press, available online 17 June 2008. 33. ASTM C597, “Standard Test Method for Pulse Velocity Through Concrete”, Annual Book of ASTM Standards, Vol. 04.02, 1987. 34. Carino N. J., and Sansalone M., “Impact-Echo: A New Method for Inspecting Construction Materials”, Proceeding of Nondestructive Testing and Evaluation of Materials for Construction, University of Illinois, August 1988 35. Lin Y., Sansalone M., Carino N. J., “Finite Element Studies of the Impact-Echo Response of Plate Containing Thin Layers and Voids”, Journal of Nondestructive Evaluation, Vol. 9, 1990, pp.27-47 36. Cheng C. C., Sansalone M., “The Impact-Echo Response of concrete Plates containing delamination: numerical, experimental and field studies”, RILEM: Materials and Structures, 1993, pp.274-285 37. Sansalone M., and Carino N. J., “Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves”, NBSIR 86-3452, National Bureau of Standard, Gaithersburg, Maryland, September 1986, pp.222 38. Waleed F. Twhed, Sarah L. Gassman, “Damage assessment of concrete bridge decks using Impact-Echo method”, ACI Materials Journal, Vol. 99, 2002, pp.273-281 39. Sansalone, M. and Carino, N.J.,”Laboratory and Field Study of the Impact-Echo Method for Flaw Detection in Concrete,” in Nondestructive Testing of Concrete, Special Publication of the American Concrete Institute, pp.1-20, 1988。 40. Sansalone, M. and Carino, N. J.,”Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves,” NBSIR86-3452, National Bureau of Standards, Gaithersburg, Maryland, pp.222, Sept 1986。 41. Pessiki, P. S. and Carino, N. J.,”Setting Time and Strength of Concrete Using the Impact-Echo Method,” ACI Materials Journal 85, pp.389-399, September-October 1988。 42. Carino, N. J., Sansalone, M. and Hsu, N. N.,”Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms,” International Advances in Nondestructive Testing, 12th Edition, W.J. McGonnagle, Ed., Gordon & Breach Science Publishers, New York, pp.117-146, 1986。 43. Y. N. Chan﹐G. F. Peng and M. Anson﹐1999,”Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures” ﹐Cement and Concrete Composites ﹐Vol. 21﹐p23~27﹐Elsevier Science Limited﹐Britain。 44. 許修豪,”不同冷卻再養護方式對混凝土承受高溫後殘餘強度及恢復狀況之影響”,國立交通大學碩士論文,1998。 45. 高金盛,沈進發,陳舜田,”混凝土火害溫度之綜合評估”,第二屆結構工程研討會論文集(I),49~59頁,南投日月潭,台灣,民國83年。 46. 王俊文,”混凝土受高溫而強度折減之分析”,國立雲林科技大學碩士論文,1999。
摘要: 混凝土在受高溫作用後強度會明顯折減,內部會發生裂縫或剥離的情況進而影響到結構物的耐久性與安全性,因此本研究針對一般混凝土與爐石混凝土二種不同參料在相同水灰比與骨材含量之下,受不同高溫後再以不同養護條件之情況下,了解其殘餘強度之比例,並藉由非破壞檢測法之波速量測法:超音波法、敲擊回音法頻譜領域及時間領域等三種方法,建立火害混凝土抗壓強度與應力波速度之間的關係,探討利用非破壞檢測應力波波速法來評估火害混凝土抗壓強度之可行性。 研究結果發現,受火害後經水中養護之混凝土,其殘餘強度在經過3至72小時水中養護後其殘餘強度回復差異不大,且所受溫度越高,殘餘強度回復越不明顯;而一般混凝土與爐石混凝土於火害後,在不同水中養護條件下之混凝土殘餘波速比與殘餘強度比間之關係曲線並不一致,故爐石粉取代水泥後,其混凝土內部經火害後於水中養護下之再水化反應與一般混凝土有所差異。 實驗結果可知應力波波速和殘餘強度關係良好,顯示使用非破壞應力波量測法評估火害後經水中養護之混凝土殘餘強度是可行的。
The strength of concrete is reduced significantly under the heat caused by a fire. Cracks occur in the interior of concrete structure due to the fire damage and affect greatly the safety and the durability of a concrete structure. In this thesis, the relationship between the residual strength of fire-damaged concrete and the residual velocity of stress waves is established, and the feasibility of using the relationship to evaluate residual strength of fire-damaged concrete with the residual velocity will be investigated. In experiment, the stress wave velocity in concrete is measured by the ultrasonic-echo method and the impact-echo method. The concrete specimens used in the studies have different experimental parameters as follows: change of heating temperature, water-cured duration and post-fire curing condition and ages. The influence of slag addition in concrete is also studied. According to the experimental results, the fire-damaged concrete can recover its strength after water-curing. The residual strength of concrete cured in water for 3 h is similar to that of concrete cured in water for 72 h. However, for concrete exposed to higher temperature, the strength restoration of concrete is less. In addition, the relationship between the residual wave velocity ratio and the residual strength ratio are different between normal concrete and the slag-cement concrete. This reveals that the addition of slag in concrete affects the re-hydration mechanism during post-fire-curing. The experimental results showed the good correlation between the residual wave velocity ratio and the residual strength ratio. It is highly feasible of using the stress wave technique to estimate the residual strength of concrete after fire-damage.
URI: http://hdl.handle.net/11455/15707
其他識別: U0005-0508200814520700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0508200814520700
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.