Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1574
標題: 分群隨機組配線性公差分析之研究
An Investigation on Linear Tolerance Ananlysis for Grouped Random Assembly
作者: 陳法志
Chen, Fa-Chih
關鍵字: tolerance
公差
grouped random assembly
variation
分群隨機組裝法
變異量
出版社: 機械工程學系所
引用: 參考文獻 [Knappe, 1963] L. F. Knappe, “A Technique for Analyzing Mechanism Tolerances,” Machine Design, 1963, pp.115-157. [Moore, 1966] R. E. Moore, Interval Analysis, Englewood Cliffs, Prentice-Hall, 1966. [Wade, 1967] O. R. Wade, “Tolerance Control in Design and Manufacturing,” Industrial Press, New York, 1967. [BjØrke, 1989] BjØrke, Computer-Aided Tolerancing, 2nd ed. ASME Press, 1989. [Tsai, 1993] J. C. Tsai, “Tolerance Reasoning for Concurrent CAD/CAM Systems,” Ph. D. Dissertation, Stanford University, 1993. [Fang & Zhang, 1995] X. D. Fang and Y. Zhang, “A new algorithm for minimizing the surplus parts in selective assembly,” Computerx intl. Engng, Vol. 28, 1995, pp.341-350. [Coullarda et al, 1998] C. R. Coullarda, A. B. Gambleb and P.C. Jonesc, “Matching problems in selective assembly operations,” Annals of Operations Research, Vol.76, 1998, pp.95-107. [Ngoi et al., 1999] B. K. A. Ngoi, L. E. N. Lim, P. S. Ang and A. S Ong, “Assembly Tolerance Stack Analysis for Geometric Characteristics in Form Control – the Catena Method,” International Journal of Advanced Manufacturing Technology, Vol.15, 1999, pp.292-298. [Thesen & Jantayavichit, 1999] A. Thesen and A. Jantayavichit, “Design and evaluation of a selective assembly station for high precision scroll compressor shells,” Proceedings of the 1999 Winter Simulation Conference,1999. [Chase & Guo, 1999] J.-B. Chase and B. Guo, “Accuracy on the Mechanical Assembly,” Journal of Forklift Truck Technology, Vol.1, 1999, pp.5-7. [Kannan et al., 2003] S. M. Kannan, V. Jayabalan and Jeevanantham, “Genetic algorithm for minimizing assembly variation in selective assembly,” International Journal of Production Research, 2003, Vol.41, pp.3301-3313. [Yeh & Chang, 2003] C. C. Yeh and P. L. Chang, “The Taiwan system of innovation in the tool machine industry: A case study,” Journal of Engineering and Technology Management - JET-M, Vol.20, No.4, December, 2003, pp.367-380. [Ponnambalam, 2006] S. G. Ponnambalam, “Parallel Populations Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly,” International Conference on Automation Science and Engineering, Vol.7, 2006, pp.496-500. [Iyama et al, 2007] T. Iyama, M. Mizuno, K. N. Mckay, M. Ito, J. Tamaki, “Optimal matching for inline resource selection when errors exist in error measurement—A relay production system case study,” Journal of Materials Processing Technology, Vol.183, 2007, pp.277–283. [Kumar & Kannan, 2007] M. S. Kumar and S. M. Kannan, “Optimum manufacturing tolerance to selective assembly technique for different assembly specifications by using genetic algorithm,” International Journal of Advanced Manufacturing Technology, Vol.32, 2007, pp.591–598. [Asha et al, 2008] A. Asha, S. M. Kannan, V. Jayabalan, “Optimization of clearance variation in selective assembly for components with multiple characteristics,” International Journal of Advanced Manufacturing Technology, Vol.38, 2008, pp.1026-1044. [Kannan et al, 2008] S. M. Kannan, A. K. Jeevanantham and V. Jayabalan, “Modelling and analysis of selective assembly using Taguchi''s loss function,” International Journal of Production Research, Vol.46, 2008, pp.4309-4330. [Yamada et al, 2008] Yasuhiro Yamada, Yoshiaki Komura, Junnosuke Mizutani, and Ikuo Tanabe, “Development of a Precision Assembly System Using Selective Assembly and Micro Machinin,” LNCS 1798, 2000, pp.407–413. [Kannan et al, 2009] S. M. Kannan, R. Sivasubramanian and V. Jayabalan, “Particle swarm optimization for minimizing assembly variation in selective assembly,“ International Journal of Advanced Manufacturing Technology , Vol.42, 2009, pp.793–803. [Matsuura & Shinozaki, 2010] Shun Matsuura and Nobuo Shinozaki, “Optimal process design in selective assembly when components with smaller variance are manufactured at three shifted means,” International Journal of Production Research, 2010. [Matsuura & Shinozaki, 2010] Shun Matsuura and Nobuo Shinozaki, “Selective Assembly for Maximizing Profit in the Presence and Absence of Measurement Error,” Frontiers in Statistical Quality Control, Vol.9, 2010, pp.173- 190. [Raj et al, 2010] M. V. Raj, S. S. Sankar, and S. G. Ponnambalam, “Optimization of assembly tolerance variation and manufacturing system efficiency by using genetic algorithm in batch selective assembly,” International Journal of Advanced Manufacturing Technology, 2010. [鄭國德,1994] 鄭國德,區間與統計資料運算方法之發展及其在產品誤差分析之應用,國立中興大學機械工程研究所碩士論文,1994。 [侯靖男,1995] 侯靖男,公差分析與公差敏感度分析在產品設計之應用,國立中興大學機械工程研究所碩士論文,1995。 [石進名,1996] 石進名,車削加工線性公差分析與製程合理化研究,國立中興大學機械工程研究所碩士論文,1996。 [王曉慧,2002] 王曉慧,“關於虛公差問題的研究”,製造技術與機床,2002。 [沈劍英,2003] 沈劍英,“虛公差現象及其探討”,機械研究與應用,第16卷第4期,2003年12月。 [戴君豪,2009] 戴君豪,以公差為限制之分組選配方法,國立中興大學機械工程研究所碩士論文,2009。 [蔡志成與黃政德,2009] 蔡志成、黃政德, “工具機主軸組裝精度之變異分析與公差調配”,2009海峽兩岸現代精度理論及應用學術研討會論文集,113-117頁,2009。
摘要: 產品之零組件在生產製造過程會產生加工誤差,這些誤差在組裝時會因為累積而導致產品組裝後精度和品質的變異,若要提昇產品精度,方法之一就是提高零件的公差要求,但嚴苛的公差要求將導致生產成本提高,故亟需探討如何掌握組裝的公差累積現象,以取得產品精度品質及生產成本之間的平衡。本研究嘗試以不提高零件公差規格但能降低組裝後品質變異量的「分群隨機組裝法」,探討兩零件組裝時,各零件先分群後再與對應群組之零件隨機組配的理論,以及該方法對於組裝後產品尺寸變異的影響。 本研究先由組裝尺寸鏈來分析組裝之公差累積,進一步推導零件分群後隨機組配之公差分佈;研究採用等區間與等數量作為分群之依據,討論不同零件分布模式與分群數時,對於組裝後尺寸變異量之影響,並使用最惡狀況公差、統計公差與亂數隨機組配模擬進行分析。研究結果顯示,在不改變零件公差規格的情況下,組裝之尺寸變異與分群組配方式及分群數相關,適當的分群可大幅降低組裝之尺寸變異,以兩均勻分佈之零件使用極值法分析為例,若將零件分為兩群可將組裝公差降為50%;分為五群時可降至20%,但欲進一步降為10%則需分為10群,且兩零件公差越接近,其分群組配後縮減公差的效果越明顯。且於常態分布等區間與等數量分群,於分群數較多之狀況下,等區間分群組裝可減少較多的變異量;等數量分群則分布較集中,但變異量大者出現機率較高。研究更進一步以320件零件之分群隨機組配實驗驗證理論之正確性,實驗數據驗證模擬分析與實驗結果具一致性。 本研究主要貢獻在於提出並驗證「分群隨機組裝法」可有效地達成產品品質而不需嚴苛地緊縮零件公差,研究結果亦顯示吾人能以較寬鬆之零件公差組配出較高品質之產品,大幅降低產品零組件生產成本。
URI: http://hdl.handle.net/11455/1574
其他識別: U0005-1808201114391300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201114391300
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.