Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15742
標題: 非破壞檢測方法應用於高溫作用後混凝土結構之損害評估
Using the Nondestructive Test Methods for Damage Evaluation of Concrete Structures after Exposure to High Temperatures
作者: 楊炫智
Yang, Hsuan-Chih
關鍵字: High temperature
高溫作用
Nondestructive test
Fire damage
Concrete
非破壞檢測
火害
混凝土
出版社: 土木工程學系所
引用: 【1】 R. Cerny, M. Totova, J. Podebradska, J. Toman, J. Drchalova, P. Rovnanikova, “Thermal and hygric properties of Portland cement mortar after high-temperature exposure combined with compressive stress”, Cement and Concrete Research, Vol. 33, 2003, pp.1347-1355 【2】 Yu-Fang Fu, Yuk-Lung Wong, Chi-Sun Poon, Chun-An Tang, Peng Lin, “Experimental study of micro/macro crack development and stress-strain relations of cement-based composite materials at elevated temperatures”, Cement and Concrete Research, Vol. 34, 2004, pp.789-797 【3】 Xi-Shu Wang, Bi-Sheng Wu, Qing-Yuan Wang, “Online SEM investigation of microcrack characteristics of concretes at various temperatures”, Cement and Concrete Research, Vol. 35, 2005, pp.1385-1390 【4】 Matthew J. DeJong, Franz-Josef Ulm, “The nanogranular behavior of C-S-H at elevated temperatures (up to 700℃)”, Cement and Concrete Research, Vol. 37, 2007, pp.1-12 【5】 F. E. LWA, “The chemistry of cement and concrete”, 1956 【6】 Lucia Alarcon-Ruiz, Gerard Platret, Etienne Massieum Alain Ehrlacher, “ The use of thermal analysis in assessing the effect of temperature on a cement paste”, Cement and Concrete Research, Vol. 35, 2005, pp.609-613 【7】 Melvin S. Abrams, “Fire safety of concrete structures”, 1983 【8】 K.-Ch. Thienel, F. S. Rostasy, “Transient creep of concrete under biaxial stress and high temperature”, Cement and Concrete Research, Vol. 26, 1996, pp.1409-1422 【9】 嚴順然, 「火害後再水化對高性能混凝土性質之影響」, 國立台灣工業技術學院碩士論文, 1996 【10】 Igor Stubna, Anton Trnik, Libor Vozar, “Thermomechanical analysis of quartz porcelain in temperature cycles”, Ceramics International, Vol.33, 2007, pp.1287-1291 【11】 A. V. Zharikov, E. B. Lebedev, A. M. Dorfmon, V. M. Vitovtova, “Effect of saturating composition on the rock microstructure, porosity, permeability and Vp under high pressure and temperature”, Phys. Chem. Earth(A), Vol. 25, 2000, pp.215-218 【12】 張郁慧, 「火害延時對混凝土材料性質之影響」, 國立台灣工業技術學院碩士論文, 1993 【13】 危時秀, 「普通混凝土熱傳導性質之研究」, 中原大學碩士論文, 2003 【14】 Sidney Mindess, J. Francis Young, David Darwin, “Concrete”, 2003 【15】 Ki-Yeol Shin, Sang-Baik Kim, Jong-Hean Kim, Mo Chung, “Thermo-physical properties and transient heat transfer of concrete at elevated temperatures”, Nuclear Engineering and Design, Vol. 212, 2002, pp.233-241 【16】 Kook-Han Kim, Sang-Eun Jeon, Jin-Keun Kim, Singchul Yang, “An experimental study on thermal conductivity of concrete”, Cement and Concrete Research, Vol. 33, 2003, pp.363-371 【17】 A. M. Neville, “Properties of concrete”, 1975 【18】 Nabi Yuzer, Fevziye Akoz, Leyla Dokuzer Ozturk, “Compressive strength-color change relation in mortars at high temperature”, Cement and Concrete Research, Vol. 34, 2004, pp.1803-1807 【19】 B. Georgali, P. E. Taskiridis, “Microstructure of fire-damaged concrete. A case study”, Cement and Concrete Composites, Vol. 27, 2005, pp.255-259 【20】 陳舜田, 「建築物火災後安全評估方法」, 1999 【21】 Y. F. Fu, Y. L. Wong, C. S. Poon, C. A. Tang, “Numerical tests of thermal cracking induced by temperature gradient in cement-based composites under thermal loads”, Cement and Concrete Composites, Vol. 29, 2007, pp.103-116 【22】 T. Z. Harmathy, “Evaluation and repair fire damage to concrete”, 1986 【23】 Binsheng Zhang, Nenad Bicanic, Christopher J. Pearce, David V. Philips, “Relationship between brittleness and moisture loss of concrete exposed to high temperatures”, Cement and Concrete Research, Vol. 32, 2002, pp.363-371 【24】 F. Vodak, K. Trtik, O. Kapickova, S/ Hoskova, P. Demo, “The effect of temperature on strength-porosity relationship for concrete”, Construction and Building Materials, Vol. 18, 2004, pp.529-534 【25】 Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong, “Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures”, Cement and Concrete Research, Vol. 31, 2001, pp.1291-1300 【26】 Y. N. Cham, X. Luo, W. Sun, “Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800℃”, Cement and Concrete Research, Vol. 30, 2000, pp.247-251 【27】 Khandaker M. A. Hossain, Mohamed Lachemi, “Residual strength and durability of Volcanic ash concrete exposed to high temperature”, ACI Material Journal, Vol. 101, 2004, pp. 493-500 【28】 Y. F. Fu, Y. L. Wong, C. S. Poon, C. A. Tang, “Stress-strain behavior of high-strength concrete at elevates temperatures”, Magazine of Concrete Research, Vol. 9, 2005, pp.535-544 【29】 Roberto Felicetti, Pietro G. Gambarova, “Effect of high temperature on the residual compressive strength of high-strength siliceous concretes”, ACI Materials Journal, Vol. 95, 1998, pp.395-406 【30】 Y. F. Chang, Y. H. Chen, M. S. Sheu, G. C. Yao, “Residaul stress-strein relationship for concrete after exposure to high temperatures”, Cement and Concrete Research, Vol. 36, 2006, pp.1999-2005 【31】 Nobutuki Yamazaki, Masatoshi Yamazaki, Testuo Mochida, etc., “Structural behavior of referenced concrete structures at high temperatures”, Nuclear Engineering and Design, Vol. 156, 1995, pp.121-138 【32】 JianChuang Xiao, Gert Konig, “Study on concrete at high temperature in China-an overview”, Fire Safety Journal, Vol. 39, 2004, pp.89-106 【33】 Y. N. Chan, G. F. Peng, M. Anson, “Residual strength and pore structure of high-strength concrete and normal strength concrete after expose to high temperatures”, Cement and Concrete Composites, Vol. 21, 1999, pp.23-27 【34】 Y. Xu, Y. L. Wong, C. S. Poon, M. Anson, “Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures”, Cement and Concrete Research, Vol. 33, 2003, pp.2009-2016 【35】 Sujit Ghosh, Karim W. Nasser, “Effect of high temperature and pressure on strength and elasticity of lignite fly ash and silica fume concrete”, ACI Materials Journal, Vol. 93, 1996, pp.51-60 【36】 C. J. Zega, A. A. Di Maio, “Recycled concrete exposed to high temperatures”, Magazine of Concrete Research, Vol. 58, 2006, pp.675-682 【37】 A. Savva, P. Manita, K. K. Sideris, “Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates”, Cement and Concrete Composites, Vol. 27, 2005, pp.239-248 【38】 Metin Husem, “ The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete”, Fire Safety Journal, Vol. 41, 2006, pp.155-163 【39】 K. Sakr, E. EL-Hakim, “Effect of high temperature or fire on heavy weight concrete properties”, Cement and Concrete Research, Vol. 35, 2005, pp. 590-596 【40】 Sammy Yim Nin Chan, Xin Luo, Wei Sun, “Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete”, Construction and Building Materials, Vol. 14, 2000, pp.261-266 【41】 A. Y. Nassif, S. Rigden, E. Burley, “The effects of rapid cooling by water quenching on the stiffness properties of fire-damage concrete”, Magazine of Concrete Research, Vol. 51, 1999, pp.255-261 【42】 Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong, “Strength and durability recovery of fire-damage concrete after post-fire-curing”, Cement and Concrete Research, Vol. 31, 2001, pp.1307-1318 【43】 ACI Committee 228, “Nondestructive Test Methods for Evaluation of Concrete in Structures,” ACI 228.2R, 1998. 【44】 ASTM C597, “Standard Test Method for Pulse Velocity Through Concrete”, Annual Book of ASTM Standards, Vol. 04.02, 1987. 【45】 Carino N. J., and Sansalone M., “Impact-Echo: A New Method for Inspecting Construction Materials”, Proceeding of Nondestructive Testing and Evaluation of Materials for Construction, University of Illinois, August 1988 【46】 Lin Y., Sansalone M., Carino N. J., “Finite Element Studies of the Impact-Echo Response of Plate Containing Thin Layers and Voids”, Journal of Nondestructive Evaluation, Vol. 9, 1990, pp.27-47 【47】 Cheng C. C., Sansalone M., “The Impact-Echo Response of concrete Plates containing delamination: numerical, experimental and field studies”, RILEM: Materials and Structures, 1993, pp.274-285 【48】 Sansalone M., and Carino N. J., “Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves”, NBSIR 86-3452, National Bureau of Standard, Gaithersburg, Maryland, September 1986, pp.222 【49】 Waleed F. Twhed, Sarah L. Gassman, “Damage assessment of concrete bridge decks using Impact-Echo method”, ACI Materials Journal, Vol. 99, 2002, pp.273-281 【50】 Carino N. J., and Sansalone M., “Detecting Voids in Metal Tendon Ducts Using the Impact-Echo Method”, Materials Journal of the American Concrete Institude, Vol. 89, 1992, pp.296-303 【51】 Sansalone M., and Carino N. J., “Laboratory and Field Study of the Impact - Echo Method for Flaw Detecting in Concrete”, Special Publication of the American Concrete Institute, 1988, pp.1-20 【52】 Lin Y., and Sansalone M., “Transient Response of Thick Circular and Square Bars Subjected to Transverse Elastic Impact”, Journal of the Acoustical Society of America, Vol. 91, 1992, pp.885-893 【53】 Lin Y., Sansalone M., “Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method,” Materials Journal of the American Concrete Institude, 1992, pp.394-405 【54】 Lin Y., and Sansalone M., “Transient Response of Thick Rectangular Bars Subjected to Transverse Elastic Impact”, Journal of the Acoustical Society of America, Vol. 91, 1992, pp.2674-2685 【55】 Sansalone M., Lin Y., and Carino N. J., “Impact-Echo Response of Plates Containing Thin Layers and Voids”, Published in the Proceedings of Review of Progress in Quantitative NDE, eds. D. Thompson and D. Chiment I, Vol. 9B, 1990, pp.1935-1942 【56】 Lin J., and Sansalone M., “Impact-Echo Response of Hollow Cylindrical Concrete Structure by Soil or Rock, Part 1-Numerical Studies”, ASTM Geotechnical Testing Journal, Vol. 17, 1994, pp.220-226 【57】 Lin J., and Sansalone M., “Transient Elastic Impact of Thick Hollow Cylinders”, Journal of Nondestructive Evaluation, Vol. 12, 1993, pp.139-149 【58】 Lin Y., Su W. C., “The Use of Stress Waves for Determining the Depth of Surface-Opening Cracks in Concrete Structures”, Materials Journal of the American Concrete Institude, Vol. 93, 1996, pp.494-505 【59】 Hoi-Keun Lee, Hyunjune Yim, Kwang-Myong Lee, “Velocity-strength relationship of concrete by Impact-Echo method”, ACI Materials Journal, Vol. 100, 2003, pp.49-54 【60】 郭世芳, 「硬固混凝土之UPV與抗壓強度關係曲線建立」, 國立中興大學博士論文, 2006 【61】 Tzunghao Liou, Yiching Lin, Chiamen Hsiao, “New technique base on stress waves for measuring cover thickness of closely spaced reinforcing bars”, ACI Materials Journals, Vol. 99, 2002, pp.576-583 【62】 ASTM C 1150 (1992), “Standard Test Method for the Break-Off Number of Concrete,” Annual Book of ASTM Standards, Vol. 04.02 【63】 Tarun Naik, Ziad Salameh, Amr Hassaballah, “Evaluation of In-Place strength of concrete by the Break-off method”, 1988 【64】 陳彥名,「利用小型彎裂試驗檢測混凝土強度與鋼筋粘結力之探討」, 國立中興大學碩士論文, 2000 【65】 Nabi Yuzer, Fevziye Akoz, Leyla Dokuzer Ozturk, “Compressive strength-color change relation in motars at high temperature”, Cement and Concrete Research, Vol. 34, 2004 ,pp.1803-1807 【66】 陳存永, 「非破壞性技術應用於水泥砂漿試體火害程度之研究」, 國立高雄第一科技大學碩士論文, 2002 【67】 A. Y. Nassif, E. Burley, S. Rigden, “A new quantitative method of assessing fire damage to concrete structure”, Magazine of Concrete Research, Vol. 47, 1995, pp.271-278 【68】 Jun Jashimoto, Katsuki Takiguchi, “Experiment study on pullout strength of anchor bolt with an embedment depth of 30mm in concrete under high temperature”, Nuclear Engineer and Design, Vol. 299, 2004, pp.151-163 【69】 Chih-Hung Chiang, Chung-Chia Yang, “Artificial neural network on prediction of concrete strength reduction due to high temperature”, ACI Materials Journal, Vol.102, 2005, pp.93-102 【70】 石晏彰, 「火害後混凝土強度預測模式之比較研究」, 朝陽科技大學碩士論文, 2006 【71】 羅凱駿, 「以透地雷達(GPR)法檢測火害後混凝土損害狀況」, 朝陽科技大學, 2006 【72】 張耀鍾, 「以透地雷達法檢測混凝土構件火害後的劣化程度」, 朝陽科技大學, 2007 【73】 周亞儀, 「以應力波法評估混凝土表面老劣化程度之初步研究」, 朝陽科技大學, 2006 【74】 張智傑, 「以敲擊回音法檢測混凝土構件於火害後的劣化程度」, 朝陽科技大學, 2007 【75】 楊竣傑,「應用類神經網路預測混凝土受高溫影響之強度折減」, 朝陽科技大學, 2003
摘要: 混凝土是公認為較能抵抗火災高溫侵襲之材料,但是在不同高溫溫度作用下,混凝土仍然會產生強度折減、裂縫或剝離的情況發生,此現象將會影響混凝土結構體的安全與耐久性,因此,運用非破壞檢測方法進行診斷混凝土遭受高溫作用後之殘餘性質,提供判斷該建築物存廢與否將是很重要的課題。本研究主要是以研究混凝土結構體經過高溫作用後之強度折損與損害深度為主題,以非破壞檢測方法中之波速檢測法量測高溫作用後混凝土之殘餘波速,藉此評估混凝土之殘餘抗壓強度。 由試驗結果發現,在已知混凝土配比的情況下高溫作用後混凝土之殘餘波速與殘餘抗壓強度具有相當良好之關係性,但當配比未知時若以混凝土殘餘波速預估該混凝土殘餘抗壓強度將會產生較大之誤差,但若以高溫作用後之殘餘波速比進行預估混凝土殘餘抗壓強度比,可以減少因為混凝土配比所造成強度上之差異,且經由驗證試驗中發現,以殘餘波速比進行評估混凝土經過高溫作用後之殘餘抗壓強度比,可以忽略混凝土配比、高溫作用的溫度、高溫延時、甚或是養護天數等多項影響混凝土殘餘抗壓強度之因素,同時對殘餘抗壓強度比具有相當良好之預估性。 了解混凝土殘餘波速比與殘餘抗壓強度比間之良好關係性後,藉由數值模擬之方式先確立運用應力波法檢測混凝土經高溫作用後損害深度之可行性後,發現藉由應力波法檢測出之混凝土損害深度所對應之火害溫度約介於400~500 ℃,其對應之殘餘波速比與殘餘抗壓強度比約介於0.66~0.81之間。本論文採用之應力波檢測法可以測得版之火害深度位於輕度及中度損傷層。
Concrete is recognized as a fire-resistant material in construction industry. However, concrete undergoes severe changes in its chemical composition and physical properties when exposed to elevated temperatures. In this dissertation, a series of studies were performed to examine the changes in pulse velocity and strength of concrete subjected to elevated temperatures. The use of ultrasonic pulse velocity (UPV) for assessment of concrete residual strength is one of the most interesting subjects in the field of nondestructive testing of concrete after exposure to high temperatures. The objectives of this dissertation are to find the relationship between the residual strength ratio and UPV ratio of fire-damaged concrete and to develop a stress wave technique for evaluating the damage depth of concrete structures after fire. Experimental results show that change in mixture proportion of concrete does not have a significant effect on the residual strength and UPV ratios of concrete subjected to elevated temperatures. This important finding considerably enhances the feasibility of using UPV for quantitative evaluation of the residual strength of fire-damaged concrete structures. The relationship between the residual strength ratios and the residual UPV ratios were developed for fire-damaged concrete having different curing conditions. Two general equations were proposed to estimate the residual strength of concrete with and without water curing, respectively. This dissertation verifies the suitability of the proposed equations for predicting the residual strength ratios of different concrete specimens with the measured residual UPV ratios. Base on the well-correlated relationship between the residual UPV ratios and strength ratios of fire-damaged concrete, the numerical analysis was performed to simulate the temperature distribution and the stress wave propagation in the concrete plate. A test method based on stress waves was proposed to assess the damage depth of a concrete plate after fire. A comparison between the results of numerical analysis and experiment shows that the damage depth of the concrete plate identified by the proposed test method is at the layer subjected to temperatures approximately between 400~500 0C in the concrete plate. The residual UPV and strength ratios of the detected fire-damaged layer are between 0.66~0.81. It is concluded that the stress wave test method proposed in this dissertation can determine the damage depth of a concrete plate at the layer between light damage and medium damage.
URI: http://hdl.handle.net/11455/15742
其他識別: U0005-1208200811593200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208200811593200
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.