Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15756
標題: 應用紅外線偵測碳纖維貼片補強梁之介面瑕疵及載重試驗
Application of Infrared Thermography to Detection of Interfacial Flaws of RC Beams Strengthened with CFRP and Load-Carrying Tests
作者: 楊文豪
Yan, Wen-How
關鍵字: FRP
碳纖維
beam
Infrared Thermography

紅外線熱影像
出版社: 土木工程學系所
引用: 1. 施邦築,李有豐,朱國棟,「RC結構補強之材料及工法」土木技術,第5期,第118-127頁,1998.07。 2. 李有豐、朱國棟,「碳纖維強化高分子複合材料之材料測試標準與施工驗收準則之延擬」,結構工程,第十五卷,第三錡,第77-99頁,200.09。 3. 稻坦道夫、大谷杉郎、大谷朝男著,賴耿陽譯,「碳材料碳纖維工學」,複漢出版社,1986。 4. 馬振基,高分子複合材料,正中書局,1995。 5. 林至聰,「碳纖維貼片補強鋼筋混凝土構件之研究」,博士論文,國立中央大學土木工程研究所,1999。 6. M. Maalej *, K.S. Leong. Effect of beam size and FRP thickness on interfacial shear stress concentration and failure mode of FRP-strengthened beams. Composites Science and Technology 65 (2005) 1148-1158。 7. H. Toutanji∗, L. Zhao,Y. Zhang. Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix. Engineering Structures 28 (2006)557-566。 8. 苗沛元,「夜視新世界-新一代紅外線熱影像儀簡介」,軍品科技新知,第105期,第73-84頁,1998.08。 9. 工業技術研究院,「紅外線技術之應用」,計量產業透析,1992.04。 10. 賴耿陽,「紅外線工學基礎應用」,復文書局,1995。 11. G.J.,Weil, "Infrared Thermographic Techniques," Chapter 13 in Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. Carino, Eds., CRC Press, Boca Raton, FL, pp. 305-316.1991。 12. G. J.,Weil, and Rowe, T. J..“Nondestructive testing and repair of the concrete roof shell at the Seattle Kingdome.” NDT&E International, 31(6),389-400.1998。 13. 林雅萍,「紅外線熱影像法在混凝土結構CFRP修補品質之評估」,碩士論文,國立中興大學土木工程研究所,2006。 14. 廖宇淵,「建築物版狀元件的紅外線檢測與數值分析」,碩士論文,私立朝陽科技大學,2007。 15. John M. Levar and H. R.(Tery) Hamilton Ⅲ. Nondestructive Evaluation of Carbon Fiber-Reinforced Polymer-Concrete Bond Using Infrared Thermography. ACI Materials Journal/January-February 2003。 16. Jeff R. Brown and H.R. Hamilton. Heating Methods and Detection Limits for Infrared Thermography Inspection of Fiber-Reinforced Polymer Composites. ACI Journal/September-October 2007。 17. 邱添輝,「遠紅外線加熱的理論與實務」,文生書局,1998。 18. J.P. Holman著,楊春欽 譯,「熱傳遞學」,科技圖書股份有限公司,台北,1978.09。 19. C. Y.,Wei, and Woodbury, H. H., and Wang, S. C. H.(1990). “A Novel CID Structure for Improved Breakdown Voltage.” IEEE TRANSACTION ON ELEECTRON DEVICES, 37(3), 611-617. 20. A.,Rogalskl, and Chrzanowski, K.(2002). “Infrared devices and techniques.”OPTO-ELECTRONICS REVIEW, 10(2), 111–136. 21. G.T.G.Mohamedbhai,「Effect of exposure time and rates of heating and cooling on residual strength of heated concrete」,Magazine of Concrete Research,vol.38,No.136,September,pp.151-158,(1986)。 22. NEC TH7102 紅外線熱影像儀使用說明書 23. ASTM Designation: C 1018-97,「Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforce Concrete(Using Beam With Third-Point Loading」,pp.528-535
摘要: 一般而言,造成鋼筋混凝土結構物不安全的因素有混凝土的老化及劣化、結構物受外力造成損害、腐蝕、結構功能的改變、鋼筋混凝土結構設計或施工不當、配合規範之承載力修正,此時則有補強之需要,而補強材料與原混凝土之黏結介面影響補強甚鉅,本研究對一般RC梁以及受高溫作用RC梁進行補強,並預埋人工瑕疵和施工瑕疵以模擬補強介面之瑕疵,本文使用紅外線熱影像法檢測其介面瑕疵百分比,再輔以載重試驗,探討介面瑕疵對補強梁承載力之影響。 實驗結果顯示經良好施工補強梁試體,其瑕疵面積百分比約為1~4%。當所拍攝紅外線熱影像圖之檢測區域含瑕疵之試體當瑕疵面積夠大且群聚時,因其熱傳性質之差異將於面積-升溫分佈圖中呈現三個主要溫度分佈之波形;而瑕疵面積小且為分散時則面積-升溫分佈圖只呈現兩個主要溫度分佈之波形。經相同碳纖維貼覆比之全尺寸梁和縮小尺寸梁其載重試驗之結果經正規化後之結果,證明縮小尺寸梁在力學行為上可替代全尺寸梁。經CFRP補強後之梁,未受高溫作用之梁其補強之效益為未補強RC梁之145%;受550 、650 高溫作用後之梁經補強後其回復之效益為受550 、650 高溫作用後未補強RC梁之171%、 203%。本研究針對單面純撓曲補強梁試體之介面瑕疵對於未受高溫作用之補強梁其力學行為之極限載重幾無影響,其介面瑕疵主要之影響將是梁於載重試驗中降伏後之韌性,瑕疵面積百分比越大,韌性越差。
In general, the RC structures need to be strengthened when the safety of RC structures is threatened by some harmful factors including the aging of concrete, damage cause by external force, the corrosion, functional change, original design and construction errors, more load-carrying requirement due to new code. And the interfacial bond between the repair material and original concrete is the key to determine the repair quality. In this thesis, normal and fire-damaged RC beams were considered as strengthening specimens. Artificial flaws were used simulate interfacial defects of RC beams strengthened with CFRP. In addition, interfacial flaws generated in construction procedure were considered. The infrared thermography technique was used to inspect the interfacial flaws. Load tests were also carried out to find the relationship between the area of interfacial flaws and the load-carrying capacity of the strengthened RC beams. The experimental results show that the area of the interfacial flaws of RC beams strengthened by normal rolling procedure is almost about 1~4%. For a large area of the interfacial flaws present in the specimen, the temperature-area graph shows three main temperature distribution peaks; On the other hand, if the area of interfacial flaws is small and spill, the graph shows two main temperature peaks. The characteristic temperature distributions are due to variations in heat conduction for large and small flaws. The results obtained from load tests show that there is no significant difference in the normalized load-displacement curve between full-scale and small-size beams; this has proved that the small-size beams can replace the full-scale beams in studies. The load-carrying capacity of the RC beam strengthened with CFRP can be increased to a level of about 140% compared to the RC beam without strengthening. After strengthening, the load-carrying capacity of the fire-damaged RC beams subjected to the elevated temperatures of 550 and 650 can be enhanced up to 171% and 203%, respectively, compared to the fire-damaged RC beams. Experimental results show that the effect of interfacial flaws of the RC beams strengthened with CFRP is insignificant on load-carrying capacity, but ductility. The larger area of interfacial flaws results in the less ductility of the strengthened RC beams.
URI: http://hdl.handle.net/11455/15756
其他識別: U0005-1408200813252500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408200813252500
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.