請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/15804
標題: 依唯結構反應量測之系統模態參數識別
Modal Parameter Identification Based Only on Structural Response Measurements
作者: 劉勛仁
Liu, Hsun-Jen
關鍵字: structural health monitoring
結構健康監測
ambient
output-only system identification
stochastic subspace identification technique
微振
唯輸出系統識別
隨機子空間系統識別方法
出版社: 土木工程學系所
引用: 1. Zadeh, L. A., “On the Identification Problem”, IRE Transactions on Circuit Theory, Vol. 3, Issue 4, pp. 277-281, 1956. 2. Ljung, L., System Identification: Theory for the User, 1st Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 3. Ljung, L., System Identification: Theory for the User, 2nd Edition, Prentice-Hall, Upper Saddle River, New Jersey, 1999. 4. Juang, J. N., Applied System Identification, Prentice-Hall, Englewood Cliffs, New Jersey, 1994. 5. Eykhoff, P., System Identification: Parameter and State Estimation, John Wiley & Sons, London, England, 1974. 6. Astrom, K. J., and Eykhoff, P., “System Identification - A Survey”, Automatica, Vol. 7, No. 2, pp. 123-62, Mar. 1971. 7. Den Hartog, J. P., Mechanical Vibrations, 4th Edition, McGraw-Hill, New York, U.S.A., 1962. 8. Juang, J. N., and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”, Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, pp. 620-627, 1985. 9. Ewins, D. J., Modal Testing: Theory and Practice, Research Studies Press LTD., 1st Edition, Hertfordshire, London, 1986. 10. Chopra, A. K., Dynamics of Structures: Theory and Applications to Earth- quake Engineering, Prentice-Hall, New Jersey, U.S.A., 2001. 11. Ho, B. L., and Kalman, R. E., “Effective Construction of Linear State-Variable Modal from Input/Output Data”, Regelungstechnik 14, pp. 545-648, 1966. 12. Zeiger, H.P., and McEwen, A. J., “Approximate Linear Realization of Given Dimension via Ho’s Algorithm”, IEEE Transactions Automatic Control, Vol. AC-19, No-2, pp. 53, 1974. 13. Kung, S. Y., “A New Identification and Modal Reduction Algorithm via Singular Value Decomposition”, the 12th Asilomar Conference on Circuits, Systems and Computers, pp. 705-714, Asilomar, California, U.S.A., 1974. 14. Juang, J. N., Cooper, J. E., and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations(ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14, 1988. 15. Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W., “Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments”, Journal of Guidance, Control and Dynamics, Vol. 16, No. 2, pp. 320-329, 1993. 16. Moonen, M., Demoor, B., Vandenberghe, L., and Vandewalle, J., “On- and Off-Line Identification of Linear State-Space Models”, International Journal of Control, Vol. 49, pp. 219-232, 1989. 17. Moonen, M., and Vandenberghe, L., “QSVD Approach to On- and Off-Line State-Space Identification”, International Journal of Control, Vol. 50, pp. 1133-1146, 1990. 18. Verhaegen, M., “Subspace Model Identification: Part 1 - The Output-Error State-Space Model Identification Class of Algorithms”, International Journal of Control, Vol. 56, No. 5, pp. 1187-1210, 1990. 19. Juang, J. N., “State-Space System Realization with Input- and Output-Data Correlation”, NASA Technical Paper 3622, 1997. 20. 林其璋, 吳侑霖, 王傑兒, “應用地震記錄之建築結構系統識別”, 八十八年「電子計算機於土木水利工程應用」研討會, Vol. 1, pp. 271-278, 臺中, 2000. 21. Krämer, C., De Smet, C.A.M., and Peeters, B., “Comparison of Ambient and Forced Vibration Testing of Civil Engineering Structures”, In Proceedings of IMAC 17, the International Modal Analysis Conference, pp. 1030-1034, Kissimmee, Florida, USA, February 1999. 22. Peeters, B., and De Roeck, G., “Stochastic System Identification for Operational Modal Analysis: A Review”, Journal of Dynamic Systems, Measurements, and Control, ASME, Vol. 123, pp. 659-667, 2001. 23. Brincker, R., Zhang, L., and Andersen, P., “Modal Identification of Output-Only Systems Using Frequency Domain Decomposition”, Smart Materials and Structures, Vol. 10, pp. 441-445, 2001. 24. Parloo, E., Guillaume, P., and Cauberghe, B., “Maximum Likelihood Identification of Non-Stationary Operational Data”, Journal of Sound and Vibration, Vol. 268, pp. 971-991, 2003. 25. Fonseca, J. R., Friswell, M. I., Mottershead, J. E., and Lees, A. W., “Uncertainy Identification by the Maximum Likehood Method”, Journal of Sound and Vibration, Vol. 288, pp. 587-599, 2005. 26. Ibrahim, S. R., and Mikulcik, E. C., “The Experimental Determination of Vibration Test Parameters from Time Responses”, 46th Shock and Vibration Bulletin, pp. 187-196, 1976. 27. Cole, H. A., “On-line Failure Detection and Damping Measurement of Aero- space Structures by Random Decrement Signatures”, NASA CR-2205, 1973. 28. Cole, H. A., Method and Apparatus for Measuring the Damping Characteristics of a Structure, United State Patent No. 3620069, 1971. 29. Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., and Cook, M. F., “A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique”, Journal of Mechanical Design, Vol. 104, pp.307-313, 1982. 30. James, G. H., Carne, T. G., Lauffer, J. P., and Nard, A. R., “Modal Testing Using Natural Excitation”, In Proceedings of the 10th IMAC, San Diego, California, U.S.A., February 3-7 1992. 31. Van Overschee, P., and De Moor, B., Subspace Identification for Linear Systems: Theory-Implementation-Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. 32. Peeters, B., and De Roeck, G., “Reference-Based Stochastic Subspace Identification for Output-Only Modal Analysis”, Mechanical Systems and Signal Processing, Vol.13, No.6, pp. 855-878, 1999. 33. Peeters, B., “System Identification and Damage Detection in Civil En- gineering”, Ph.D. thesis, Department of Civil Engineering, Katholieke Universiteit Leuven, Belguim, 2000. 34. Lin, C. C., Wang, J. F., Ueng, J. M., “Vibration Control Identification of Seismically-Excited MDOF Structure-PTMD Systems”, Journal of Sound and Vibration, Vol. 240, No. 1, pp. 87-115, 2001. 35. Lin, C. C., Hong, L. L., Ueng, J. M., Wu, K. C., and Wang, C. E., “Parametric Identification of Asymmetric Buildings from Earthquake Response Records”, Smart Materials and Structures, Vol. 14, pp. 850-861, 2005. 36. Zhang, L., Brincker, R., and Anderson, P., “An overview of operational modal Analysis: Major Development and Issues”, IOMAC, Copenhagen, 2005. 37. Van Overschee, P., and De Moor B., “Subspace Algorithm for the Stochastic Identification Problem”, In Proceedings of the 30th IEEE Conference on Decision and Control, pp. 1321-1326, 1991. 38. Van Overschee, P., and De Moor, B., “Subspace Algorithms for the Stochastic Identification Problem”, Automatic, Vol. 29, No. 3, pp. 649-660, 1993. 39. Peeters, B., De Roeck, G., Pollet, T., and Schueremans, L., “Stochastic Subspace Techniques Applied to Parameter Identification of Civil Engineering Structure”, In Proceedings of the International Conference MV2 on New Advances in Modal Synthesis of Large Structures, Non-Linear, Damped and Non- Deterministic Cases, pp. 151-162, Lyon, France, October 1995. 40. Kompalka, A. S., Reese, S., and Bruhns, O. T., “Experimental Investigation of Damage Evolution by Data-Driven Stochastic Subspace Identification and Iterative Finite Element Model Updating”, Archive of Applied. Mechanics, Vol. 77, No. 8, pp. 559-573, Aug. 2007. 41. Mevel, L., Basseville, M., and Goursat, M., “Stochastic Subspace-Based Structural Identification and Damage Detection-Application to the Steel-Quake Benchmark”, Mechanical Systems and Signal Processing, Vol. 17, No. 1, pp. 91-101, 2003. 42. Mevel, L., Basseville, M., and Goursat, M., “Stochastic Subspace-Based Structural Identification and Damage Detection-Application to the Z24 Bridge Benchmark”, Mechanical Systems and Signal Processing, Vol. 17, No. 1, pp. 143-151, 2003. 43. Yu, D. J., and Ren, W. X., “EMD-Based Stochastic Subspace Identification of Structures from Operational Vibration Measurements”, Engineering Structures, Vol. 27, Issue 12, pp. 1741-1751, Oct. 2005. 44. Fan, K. Q., Ni, Y. Q., and Gao, Z. M., “Improved Stochastic System Identification Approach with Its Application in Bridge Condition Monitoring”, China Journal of Highway and Transport, Vol. 17, No. 4, pp. 70-78, 2004. 45. Chang, J., Zhang, Q. W., and Sun, L. M., “Identified Method of Arch Bridge Modal Parameters Based on Stochastic Subspace Combined with Stabilization Diagram”, China Journal of Architecture and Civil Engineering, Vol. 24, No. 1, Mar. 2007. 46. 鍾立來, 吳賴雲, 林昭葳, 黃國倫, 曾建創, 連冠華, “結構加裝圓棒型加勁阻尼器之動力分析及試驗驗證”,國家地震中心研究報告,報告編號:NCREE-05-024, 2005. 47. 楊淳皓, “扭轉耦合建築結構受震層間損壞指標”, 國立中興大學土木工程研究所碩士論文, 2006. 48. Lin, C. C., and Soong, T. T., et al, “Machine Diagnostics by Inverse Filtering Techniques”, In Proceedings of the First International Machinery Monitoring and Diagnostics Conference, pp. 155-160, Las Vegas, Nevada, U.S.A., Sep. 11-14, 1989. 49. Lin, C. C., et al, Method and Apparatus for Diagnostics the State of a Machine, United State Patent No. 4-980-844, Dec. 25, 1990. 50. 王哲夫, “被動調諧質量阻尼器之最佳設計暨應用”, 國立中興大學土木工程研究所碩士論文, 1993. 51. 林孟慧, 劉勛仁, 江宏偉, “裝設強震監測系統之建築結構調查分析”, 行政院國家科學委會大專生專題研究計畫, NSC 94-2815-C-005-025-E, 2006. 52. 呂明威, “應用地震記錄之結構模態參數識別與損害評估”, 國立中興大學土木工程研究所碩士論文, 2000. 53. Betti, R., Hong, A. L., and Lin, C. C., “Identification of Dynamic Models of a Building Structure Using Multiple Earthquake Records”, In Proceedings of International Symposium on Structural Control and Health Monitoring Conference, pp. XV1-XV23, National Chung Hsing University, Taichung, Taiwan, R.O.C., Jan. 10-11, 2008.
摘要: 針對受環境擾動(例如交通、風力)之建築結構或橋樑進行持續之反應量測以評估結構健康狀態,為確保結構系統安全之最近診斷技術。對於裝設有感應器之建築結構,可採用強震前後之小地震量測訊號,以線性非時變之輸入輸出系統識別(Input-Output System Identification)法,求得強震前後之線性結構模態參數,作為損壞評估方法之輸入參數依據。但對於非地震期間之結構健康狀態監測,此時由於結構之振動源不確定且無法正確進行量測,必須使用唯輸出系統識別方法(Output-Only System Identification),進行結構模態參數之識別。本文主要應用隨機子空間識別(Stochastic Subspace Identification, SSI)法,可分為協方差型(Covariance-Driven, SSI-COV)與資料型(Data-Driven, SSI-DATA),在僅有建築結構輸出量測反應、且噪訊比較大之情況下,進行結構系統模態參數萃取。SSI-COV與SSI-DATA兩法皆假設結構主要受穩態白噪訊(White Noise)輸入作用,分別應用協方差(Covariance)觀念將噪訊影響去除,以及引入卡氏濾波概念以預估狀態重建狀態空間模型,進而求得系統模態參數。本文將針對SSI法之應用問題進行探討,並針對國內實際結構如台電大樓及中興大學土環大樓之微振量測反應進行分析,同時以強震輸入輸出反應識別所得結果進行比較,驗證SSI兩方法之準確性。
Structural health monitoring based on ambient measurements for safety of high-rise buildings and long-span bridges subject to environmental excitations is a state-of-the-art technique. For a monitored building, its linear dynamic properties before and after earthquakes can be obtained by system identification techniques based on input and output measurements. However, structural health monitoring during non-earthquake event, due to uncertainty and unmeasurable of input sources, needs the employment of output-only system identification techniques. This paper applies the Stochastic Subspace Identification (SSI) to the extraction of modal paramters of building on the basis of acceleration measurements. The SSI technique can be futher classified into covariance-driven (SSI-COV) and data-driven (SSI-DATA) algorithms. SSI-COV and SSI-DATA both are established based on the assumption of stationary white-noise input. SSI-COV applies covariance computation to separate nosie effect, while SSI-DATA addresses the Kalman Filter estimating state to reconstruct the state space system model. The SSI technique is also applied to the analysis of Tai-Power building and the Civil and Environmental Engineering Building in National Chung Hsing University. The results are compared with those obtained by an input/output identification technique based on earthquake measurements. This verifies SSI is useful in practice.
URI: http://hdl.handle.net/11455/15804
其他識別: U0005-2108200816352100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200816352100
顯示於類別:土木工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。