Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15833
標題: 曲線管推進之物理模型實驗與推進力之分析研究
Physical Modeling of Curved Pipejacking with Study of Driving Force
作者: 陳忠傑
Chen, Chung-Chieh
關鍵字: Curved Pipejacking
曲線管推進
over-cut
超挖
出版社: 土木工程學系所
引用: 參考文獻 1. 江奕廷,2007,「曲線管推進之物理模型試驗與數值分析」,碩士論文,國立中興大學土木工程研究所。 2. 榮工處,1989,「潛盾隧道施工技術」,榮民工程顧問公司。 3. 倪至寬,2005,「衛生下水道施工與標準作業程序(上)」,詹氏書局。 4. Roger, C.D.F. and Chapman, D.N., 1994, “Laboratory Modeling of Ground Movements Caused by Pipe Jacking”, Ground Engineering, October, pp.27~36。 5. 張芳維,2002,「管推進工程之物理模型試驗與數值分析」,碩士論文,國立中興大學土木工程研究所。 6. 劉耀鈞,2003,「軟弱岩石隧道開挖之物理模型試驗與數值分析」,碩士論文,國立中興大學土木工程研究所。 7. 蕭伯仰,2004,「人造軟岩潛盾開挖之物理模型試驗與數值模擬分析」,碩士論文,國立中興大學土木工程研究所。 8. 陳貽竣,2005,「軟弱岩石推進工程之物理模型試驗與推進力之分析研究」,碩士論文,國立中興大學土木工程研究所。 9. Shin, J.H, Choi, Y.K., Kwon O.Y. and Lee, S.D., 2008, “Model testing for pipe-reinforced tunnel heading in a granular soil”, Tunnelling and Underground Space Technology ,vol.23, pp. 241~250 10. Chambon, P. and Corté, J.F., 1990, “Shallow Tunnels in Soil:Stability of Tunnel face”, Journal of Geotechnical Engineering, Vol120, No.7, pp.1148~1165。 11. Peck, R.B., 1969, “Deep Excavation and Tunneling in Soft Ground”, Proc. 7th International Conference on Soil Mechanics Foundation Engineering, Mexico City, pp.571~663。 12. Chapman, D.N. and Ichioka, Y., 1999, “Prediction of Jacking Forces for Microtunnelling Operations”, Trenchless Technol. Res., Vol. 1, pp.31~41. 13. Pellet-Beaucour, A.L. and Kastner, R., 2002 , “Experimental and Analytical Study of Friction Forces during Microtunneling Operations”, Tunnelling and Underground Space Technology , Vol. 17 , pp.83~97. 14. Sofianos , A.I., Loukas , P. and Chantzakos , C., 2004 , “Pipe Jacking a Sewer Under Athens”, Tunnelling and Underground Space Technology , Vol. 19 , pp.193~203. 15. Shimada, H., Khazaei, S. and Matsui, k., 2007, “Small Diameter Tunnel Excavation Method Using Slurry Pipe-Jacking”, Geotechnical and Geological Engineering, Vol. 22, pp161–186. 16. 李德寅,王邦楣,林業超,1996,「結構模型試驗」,科學出版社。 17. 王義龍,1997,「以物理模型試驗探討卵礫石層隧道開挖之力學行為」,碩士論文,國立中興大學土木工程研究所。 18. Moon, H. and Hucka, V.J., 1978, “Investigation of Equivalent Materials for Physical Modeling of Utath Coal Seams”, Proc. 26th US Symp. on Rock Mech., pp.1281~1288。 19. ICPDAS, Inc.,2005,WinCon-8000 Getting Started, V.1.0. 20. TPZO, Inc. 2007,Mathematica User’s Manual, V.5.1.。 21. 日本下水道管渠推進技術協會,2000,「推進工法應用篇-長距離曲線推進」。 22. 壽克堅、顏君行、劉耕豪,2007,“推進用滑材摩擦特性及其對推進行為之影響”,中日免開挖工程實務研討會,ppR1~8。 23. 任德煜,1998,「台中都會區卵礫石層推進工法之分析研究」,碩士論文,國立中興大學土木工程研究所。
摘要: 隨著經濟的起飛,地下工程建設的需求也日亦遽增,但在都會區內人口密集處施工時易對交通造成衝擊影響,再加上如遇到地下障礙物或無法避免的情況發生時,使得傳統的開挖工法如:明挖覆蓋工法已不適用,而需採用非明挖覆蓋工法來進行較為適當,本研究以探討非明挖覆蓋工法中的曲線管推進工法為主。曲線推進施工常因為規劃路線與實際推進路線不一致、面盤阻力過大造成機頭損壞與摩擦阻力過大導致無法順利推進等因素,使得土體側向反力與管材和土體之間的摩擦力探討格外重要。 本文主要分為物理模型實驗及推進力分析兩大部份;物理模型實驗採用兩種不同曲率半徑之曲線管串進行鬆砂管推進實驗,利用模型試驗來模擬現地開挖狀況,配合不同的開挖面盤轉速來模擬推進時的擠壓或超挖情形,並量測推進過程中土體的應力變化情形、地表變位、土體擾動情況以及曲線推進管前方阻抗力值。推進力分析方面,分為靜力分析與推進力計算兩部份,分別用推導的靜力平衡式與經驗公式來探討總推進力與切削面盤阻力之關係,並以物理模型試驗與現地實際工程案例做為運算基礎,進行比較分析探討。 研究結果顯示管串推進過程中,切削面盤轉速與管串推進速度有密切的關係,本研究使用之管串出土平衡點為推進速度1mm/min時,轉速0.5-0.7轉,與推進速度0.5mm/min時,轉速0.3-0.5轉;並由改良後管串得知切削頭的刀頭設計也影響到超挖與否。由實驗中微型土壓力讀數,得知管串於推進過程中對管外側土體造成擠壓,其影響的範圍約在0.25倍管徑內。由靜力平衡推導公式計算工作井推進力,可發現靜力平衡公式之計算值大於經驗公式之計算值,研判為本研究假設管材受土體側向反力之影響,力的分佈為連續性且不發生旋轉太過保守,加入使用滑材計算後,可發現推進力大幅減少。但隨著推進節數的增加,靜力分析計算出的推進力仍較經驗公式計算之推進力大,研判是因為本研究假設推管按既定路線推進,不轉動也不移動下進行推導過於理想保守。
Due to the economy growth and urban development, the demand of underground excavation increases rapidly in Taiwan area. The impact on the traffic and the barriers on the surface makes the open cut unfeasible, which motivate the development and application of No-Dig technology. This research focuses on the Curved Pipe Jacking Method primarily. The curve driving construction often encounters difficulties, such as inconsistent driving route, resistance large than capacity, cutter head damage, and driving blockage. This study explores those problems from the pipe-soil interaction point of view. This study comprises physical modeling and driving forces analyses. The physical modeling in loose sand adopts two curved pipes with different radii of curvature, location excavation similar conditions, and different advancing rate and rotational speed of cutting face to simulate the blow-out and over-cut behavior for curved pipejacking. Besides, during the driving process, readings were taken for stresses within the soil and on the pipe surface, surface settlement, and reaction force at the cutter head of curved pipe. Based on static equilibrium analysis and the empirical formula, the required driving forces and the total force at the cutter head can be calculated. The results were calibrated by the physics modeling and a practical pipejacking case. The results of physical modeling show there is a correlation between advancing (driving) rate and rotational speed of cutter head for a stable pipejacking. For the pipe in this study, the relation is rotational speed requires 0.5-0.7 rpm for a driving rate of 1 mm/min, and requires 0.3-0.5 rpm for a driving rate of 0.5 mm/min. Besides, the design of the curved pipes also affects the extent of lateral over-cut. The results of pressure meter reading suggest there is squeezing effect at the outer side of the curved pipe, and the range of influence is approximately 0.25 pipe diameter. The driving forces calculated by static equilibrium analysis is greater than those obtained by the empirical formula. The reason of this overestimation could be the conservative assumption of the continuous distribution of lateral stresses and not allow the pipe string to rotate. However, the results of the case with lubricants show a significant reduction in driving force requirement, which strongly suggest the necessity of lubricants for curved pipejacking.
URI: http://hdl.handle.net/11455/15833
其他識別: U0005-2208200816141900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200816141900
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.