Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15903
標題: 輕質預力混凝土樑之時間性變形研究
Time-dependent deformation of Prestressed Lightweight Concrete Beams
作者: 李政軒
Li, Jheng-Syuan
關鍵字: Time-dependent deformation
輕質預力混凝土樑
時間性變形
出版社: 土木工程學系所
引用: 1. 李名浩(陳豪吉教授指導),[旋窯燒製水庫淤泥輕質骨材之研究],國立中興大學土木工程系碩士論文,2003。 2. 顏聰,[輕質混凝土之工學性質與工程特性],混凝土工程技術研習會,台灣營建研究中心,1975。 3. 林維明, 吳介源,[當前輕質粒料混凝土應用的重要],台灣公路工程,第二十六卷,第五期,pp.36-48,1999。 4. Shortand Kinniburgh ,“ Light - Weight Concrete ”, MAMLX III , London , 1963. 5. 黃中和(陳豪吉教授指導),[輕質骨材混凝土樑耐震行為之研究],國立中興大學土木工程系博士論文,2005。 6. 陳澤修,[綠色建築新材料冷結型煤灰輕質骨材],現代營建,208 期,1997。 7. 王順元,[淤泥輕質骨材燒製研究],碩士論文,中興大學,1999。 8. 顏聰、陳豪吉等[輕質骨材混凝土配比設計及拌製技術之研究],內政部建築研究所成果報告,MOIS830012,1994。 9. 蔡昌宏[燒結型輕質骨材混凝土工程性質之研究],碩士論文,台灣科技大學,2000。 10. 蔡昆城[淤泥在生輕質骨材混凝土工程性質之研究],碩士論文,台灣科技大學,2000。 11. 楊時元,陶粒原料性能及找尋方向探討,建地材料,No.4,pp.14-19,1997。 12. 湯兆緯,[場鑄輕質粒料混凝土橋版之施作],台、中、日、美地區輕質骨材混凝土產業成果研討會,台中,2006。 13. Weigler, H and Karl, S, “Stahlleichtbeton,” : Bauverlag GMBH, Wiesbaden and Berlin, PP.38-43, 1972. 14. Min-Hong Zhong and Odd E. Gjorv ,“ Mechanical properties of High-strength Lightweight Concrete”,ACI Material Journal May-June 1991. 15. 顏聰,[輕質骨材混凝土之力學性質],高性能混凝土於結構工程之應用研討會論文集,台中,2003.12, pp.1-1~1-21。 16. 蘇南、林維明,[國內外輕質混凝土科技之發展],結構工程,第六卷,第四期,PP.91-109, December 1991。 17. 林維明,[結構用輕質混凝土性質],結構工程,第七卷,第二期,PP.89-119, June 1992. 18. 顏聰、陳豪吉,[輕質骨材混凝土]。 19. 中華顧問工程司 第二結構部/副理/莊文宏、正工程師/楊宏仁、工程師/張廷犖[輕質混凝土應用於橋樑工程可行性評估],中華技術季刊,10月號,68期,2005。 20. Short,A .and Kinniburgh, W.,“Lightweight Concrete”,Formerly Building Research Establishment,Garston, Watford, U.K. 1976. 21. L. Vandewalle “Concrete creep and shrinkage at cyclic ambient conditions” Cement & Concrete Composites 22 (2000) pp.201-208. 22. 陳豪吉、林建國,[無細輕質骨材混凝土性質之研究],第五屆結構工程研討會,南投,台灣,pp.531-539,2000。 23. P. Lura and K. Van Breugel, " Autogenous and drying shrinkage of high strength lightweight aggregate concrete at early ages –the effect of specimen size ". 24. International Recommendations for the Design and Construction of Concrete Structures,CEB/FIP,1976 . 25. N.A. Kornev, V.G. Kramar and A.A. Kudryavtsev, "Design Peculiarities of Prestressed Supporting Constructions from Concretes on Porous Aggregate", Lightweight Concrete, ACI, PP.141-1511980. 26. Spratt, H., "The Structural Use of Lightweight Aggregate Concrete ", C.C.A., New York, 1974. 27. Holm, T.A., T.W. Bremner & J.B. Newman, "Lightweight Aggregate Concrete Subject to Severe Weathering", Concrete International, Vol. 6, No. 6, 1986. 28. Lydon., F.D. "Properties of Hardened Lightweight Aggregate Concrete", Lightweight Concrete, ACI, 1980, PP.47-62. 29. SylvaⅢ,G. S. ;Breen,J. E.;and Burns, N. H., “Feasibility of Utilizing High-Performance Lightweight Concrete in Pretensioned Bridge Girders and Panels ,” Center for Transportaton Research, The University of Texas at Austin, Jan. 2002. 30. Mor, A., “Fatigue Behavior of High-Strength Concrete under Marine Conditions”, PhD thesis, University of California at Berkely, 1987. 31. Lutz, L. A. and P. Gergely, “Mechanics of Bond and Slip of Deformed Bars in Concrete”, ACI Journal, Proceeding, V.64, No.11, PP.711-721, Nov. 1976. 32. Chinn, J., Feruson, P.M., and Thompson, J.N., “Lapped Splices in R.C. Beam”, ACI JOURNAL, V.52, NO.2, Oct. 1955, PP.201-214. 33. Eligehausen, R., Popov, E.P., and Bertero, V.V., “Local Bond Stress-Slip Relationships of Deformed Bars Under Generalized Excitations”, V.4, Proceedings of the Seventh European Conference on Earthquake Engineering, Athens, Sept. 1982, PP.69-80. 34. 高章育,「輕質骨材混凝土之耐震性質研究」,碩士論文,中興大學,2002。 35. Mor, A., “Steel-Concrete Bond in High-Strength Lightweight Concrete”, ACI Materials Journal, Jan.-Feb. 1992,PP.76-82. 36. Mor, A., “Fatigue Behavior of High-Strength Concrete under Marine Conditions”, PhD thesis, University of California at Berkely, 1987 37. 彭添富,「鋼筋混凝土」,大中國圖書公司,民國84年3月 38. Thatcher, D. B.;Heffington, J. A.;Kolozs, R. T.;SylvaⅢ,G. S.;Breen, J. E.;and Burns, N. H., “Structural Lightweight Concrete Prestressed Girders and Panels ,” Center for Transportaton Research, The University of Texas at Austin, Sep. 2001. 39. S.H. Ahmad, Y. Xie, and T. Yu, "Shear Ductility of Reinfored Lightweight Concrete Beams of Normal strength and High strength Concrete", Cement and Concrete Composites 17, PP.147-159, Jan 1995. 40. 陳鴻銓,「輕質自充填混凝土預力樑之撓曲行為」,碩士論文,中興大學,2006。 41. 許書銘,混凝土梁耐震斷面延展性設計之研究」,博士論文,國立台灣科技大學營建工程系,民國93年6月 42. 王櫻茂,”輕質骨材混凝土結構物模型試驗研究”,營建知訊,120 期,PP.50-80, September 1991.
摘要: 本文以一系列之試驗結果探討輕質混凝土預力樑之結構行為與時間性變形行為,並與常重預力混凝土樑之行為相比較。研究內容主要分為三大部分:第一部分為混凝土硬固性質和工程性質試驗。第二部分為澆置4.2 m的輕質預力混凝土樑與常重預力混凝土樑經由養護齡期不同,探討其撓曲、勁度與延展性等表現。第三部分為澆置20.5 m的輕質預力混凝土樑與常重預力混凝土樑,觀察其時間性變形,探討樑之軸向變形、預力損失發展行為、上拱量變化等。 由預力混凝土樑試驗結果得知,預力樑試體在經過一年的戶外養護後,混凝土樑之極限彎矩強度與28天者差異並不大,就延展性與養護時間而言,常重預力混凝土樑之構件延展性指數約為28天者之1.38倍,輕質預力混凝土樑之構件延展性指數約為28天者之1.33倍。試驗結果顯示在相同設計強度條件下無論輕質預力混凝土樑或是常重預力混凝土之延展性皆會較齡期28天者好,輕質預力混凝土樑之構件延展性指數及斷面延展性指數普遍較常重預力混凝土樑小。 由觀察時間性變形結果得知,在施拉預力後180天,輕質預力混凝土樑預力損失約為14.1%,常重者約為16.8%,輕質預力混凝土樑較常重者預力損失較小。此現象亦可由輕質預力樑之上拱量及軸向變形量試驗中,輕質混凝土上拱量及軸向變形量較小之結果相印證。以上研究結果顯示,輕質混凝土在配比中添加卜作嵐材料、使用預濕輕質骨材和良好的養護環境,對混凝土之乾縮與潛變有正面助益。
In this research, a series of experiments are planed to investigate the structural behavior and time-dependent derformation behavior of prestressed lightweight concrete beams for the purpose of application and compare with that of prestressed normal concrete beams. The experimental project were divided into three parts: Part I, the hardened properties and engineering properties of concrete were tested. Part II, the flexure behavior, stiffness and ductility tests of 4.2 m prestressed concrete beams were executed. Part III, time-dependent derformation behavior of 20.5 m prestressed concrete beams were observed. Drawn form the results of beam tests, it could be noticed that there are no marked differences between prestressed concrete beams specimen with curing outdoors for one year and that with curing outdoors for 28 days in flexural strength and ductility. In view of ductility, the member displacement ductility factor of prestressed normal concrete beams for the age of one year is about 138% of that for the age of 28 days. And the member displacement ductility factor of prestressed lightweight concrete beams for age of one year is about 133% of that for the age of 28 days. Whether prestressed lightweight concrete beams or prestressed normal concrete beams, the member displacement ductility factor of one year is better than that of 28 days. For the same design strength level, it shows that the ductility of prestressed normal concrete beams are better than that of prestressed lightweight concrete beams. As regards the results of the observation of time-dependent derformation of prestressed concrete beams, for 180 days after prestressing, the prestress loss is about 14.1% for prestressed lightweight concrete beam and about 16.8% for prestressed normal concrete beams. It reveals that, by means of proportioning the suitable lightweight concrete mixture to improve the volume stability, an outstanding benefit could be achieved for controlling the prestress loss of prestressed lightweight concrete beams.
URI: http://hdl.handle.net/11455/15903
其他識別: U0005-3007200811342300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007200811342300
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.