Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15907
標題: 鋼筋輕質骨材混凝土牆之耐火性能
Fire-Resistance Property of Reinforced Lightweight Aggregate Concrete Wall
作者: 羅柏易
Luo, Bo-Yi
關鍵字: fire-resistance test
混凝土牆之耐火性能
出版社: 土木工程學系所
引用: 1.The Concrete Society, “Assessment of Fire Damaged ConcreteStructures and Repair by Gunite,” Report of a Concrete Society Working Party, London, pp.28, 1978. 2.A. k. Tovey, “Assessment and Repair of Fire Damaged Concrete Structures-an Update,” ACI, Special Publication Sp-92, Evaluation and Repair of Fire Damaged to Concrete, Edited by T. Z. Harmathy, 1986. 3.吳敏洽,「受熱後混凝土內部之力學性質變化」,國立中興大學,碩士論文(指導教授顏聰),民國76年。 4.鄭錦銅,「混凝土在高溫下之熱傳及微觀結構變化」,國立中興大學,碩士論文(指導教授顏聰),民國76年。 5.劉玉雯,「高溫下混凝土之握裹行為」,國立中興大學,碩士論文(指導教授顏聰),民國79年。 6.高金盛,沈進發,陳舜田,「混凝土火害溫度之綜合評估」,第二屆結構工程研討會論文集(I),49-59頁,南投日月潭,台灣,民國83年。 7.陳舜田,「火害工程研究」,結構工程,第十一卷,第一期,39-46頁,民國85年。 8.沈進發,陳舜田,沈得縣,「混凝土結構物火害後現場勘查之程序」,結構工程,第十三卷,第二期,43-59頁,民國87年。 9.沈得縣,陳舜田,沈進發,「各國火害後混凝土結構物安全評估程序介紹」,建築物火害及災後安全評估法研討會論文集,43-70頁,台北,台灣,民國88年4月16日。 10.陳舜田,「國內外火害工程研究簡介」,建築物火害及災後安全評估法研討會論文集,31-42頁,台北,台灣,民國88年4月16日。 11.U. Schneider,: Concrete at High Temperatures –A General Review, in Fire Safety Journal, Elsevier, Vo.13, No.1, pp.55-68 (1988). 12.Eurocode 2: Design of concrete structures. prEN 1992-1-2 part 1.2: General rules –Structural fire design, European Committee for Standardization, Brussels (2002). 13.P.K. Metha, “Concrete-Structure, Material and Properties”, Prentice all, Englewood Cliffs, J. J. (1986). 14.S. Mindess & J. f. Young, “Concrete”, Prentice-Hall, Inc. Englewood liffs, New Jersey (1981). 15.Y. Collet, Etude des propriétés du béton soumis a des températures élevées entre 200 net 900°C, Annales des Travaux Publics Beiges, no 4, p 332-338 (1977). 16.EC2, “Eurocode 2: Design of Concrete Structures. ENV 1992-1-2: General Rules –Structural Fire Design”. European Committee for Standardization, Brussels, Belgium (1993). 17.BSI, “Structural Use of Concrete, BS 8110”, British StandardsInstitution, UK (1985). 18.Inwood, M., 1999, “Review of NZS 3101 for high strength and lightweight concrete exposed to fire”, Fire Engineering Research Report 99/10. University of Canterbury, New Zealand. 19.M.S. Abrams, “Compressive Strength of Concrete , atTemperatures to1600°F”, Temperature and Concrete. 20.EC3, “Eurocode 3: Design of Steel Structures. ENV 1993-1-2: General Rules – Structural Fire Design”. European Committee forStandardization, Brussels, Belgium (1995). 21.L.T. Phan and N.J. Carino, “Code Provisions for High Strength Concrete Strength-Temperature Relationship at Elevated Temperatures”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 22.A. Bilodeau, V.K.R. Kodur, and G.C. Hoff, “Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire”, Cement & Concrete Composites, Vol. 26, pp. 163-174, 2004. 23.T.A. Hammer, “Compressive Strength and E-modulus at Elevated Temperatures”, Report 6.1, High Strength Concrete phase 3, SINTEF-report no STF70 A95023, Trondheim, pp. 16, 1995. 24.T.T. Lie and D.E. Allen, Calculation of the fire resistance of reinforced concrete columns, Division of Building Research, National Research Council of Canada, Technical Paper No. 378, Ottawa, NRCC 12797, 25 p. (1972). 25.Design of Concrete Structures for Buildings, 1984. Canadian Standards Association, CSA Standard CAN3-A23.3, Rexdale, Ontario, 281 p. 26.C. Castillo and AJ. Durrani, “Effect of transient high temperature on high-strength concrete,” ACI Mater J., 87(1), pp.47-53(1990). 27.G. Sanjayan and LJ Stocks, “Spalling of high-strength silica fume concrete in fire,” ACI Mater J., 90(2), pp. 170-173(1993). 28.S.Y.N. Chan, X. Luob, and W. Sunb, “Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete,”Construction and Building Materials, No. (14), pp. 261-266(2000). 29.L.T. Phan, “Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art,” NISTIR 5934, Building and Fire Research Lab``oratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, December 1996). 30.L.T. Phan and N.J. Carino, “Review of mechanical properties of HSC at elevated temperature,” Journal of Materials in Civil Engineering, American Society of Civil Engineers, v.10 (1) (February, 1998) 58-64. 31.L.T. Phan and N.J. Carino, “Mechanical Properties of High Strength Concrete at Elevated Temperatures”, NISTIR 6726, Building and Fire Research Laboratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, March 2001). 32.U. Schneider, “Concrete at high temperatures-A general review”, Fire Safety Journal, The Netherlands (1988) 55-68. 33.U. Schneider, “Behavior of concrete at high temperatures”, RILEM-Committee 44-PHT(February, 1983). 34.U. Schneider, “Properties of materials at high temperatures-Concrete”, RILEM-Committee 44-PHT Department of Civil Engineering, University of Kassel (Kassel, June, 1985). 35.L.T. Phan and N.J. Carino, “Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures”, ACI Materials Journal, American Concrete Institute, v. 99 (1) (January-February, 2002) 54-66. 36.Y. Anderberg, Spalling phenomena of HPC and OC. Proc., In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 69-73(1997). 37.Z.P. Bazˇant, Analysis of pore pressure: thermal stresses and fracture in rapidly heated concrete, Proc, In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 155-164(1997). 38.L.T. Phan and N.J. Carino, “Fire Performance of High Strength Concrete Strength: Research Needs”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 39.T.A. Holm, “lightweight concrete and aggregates,”Standard Technical Publication 196C(1994). 40.T.A. Hammer, “Marine Concrete Structures Exposed to Hydracarbon Fires –Spalling Resistance of LWA Concrete”, SINTEF-report no STF65 A88064, Trondheim, pp. 8, 1990. 41.G. Fabritz, “Method for the Manufacture of Lightweight Fire-resistant Concrete”, Tysk patent DE 3704014 A1, pp. 2, 1987 (in German). 42.J.J. Jensen, T.A. Hammer, E. Opheim, and P. A. Hansen, “Fire Resistance of Lightweight Aggregate Concrete”, Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, pp. 192-203, 1995. 43.P.A. Hansen, and J.J. Jensen, “Fire Resistance and Spalling Behavior of LWA Beams”, Report 6.3, High Strength Concrete phase 3, SINTEF-report no STF70 A95004, Trondheim, pp. 13, 1995. 44.FIP Manual of Lightweight Aggregate Concrete, Second Edition, Surrey University Press, London, 1983H. L. Malhotra, “Spalling of Concrete in Fires”, CIRIA technical note 118, pp. 34, London, 1984. 45.陳俊釗”鋼筋輕質骨材混凝土牆之力學行為”國立中興大學土木工程研究所碩士論文,2005。 46.葉瑞德、邱耀正,”高型R.C.剪力牆-構架互制實驗研究”國立成功大學土木工程研究所碩士論文,2002。 47.余明松、邱耀正,” 低型R.C.剪力牆-構架互制實驗研究”國立成功大學土木工程研究所碩士論文,2002。 48.Structure Engineers Association of California Vision 2000 Committee, "Performance Based Seismic Engineering of Buildings", SEAOC Vision 2000 Committee ,Final Report, 1995.
摘要: 本研究主要在探討鋼筋輕質混凝土牆在進行耐火試驗(ASTM Standard E119)後,於側向水平載重下之力學行為,並與鋼筋常重混凝土牆進行比較。研究之參數包含鋼筋間距、粗骨材種類、牆體尺寸與有無火害,本文將分別探討這些參數對牆體強度、勁度、延展性及破壞模式之影響。 研究結果顯示鋼筋輕質骨材混凝土牆(RLAC牆)與常重骨材混凝土牆(RNAC牆)經過耐火試驗後,RLAC牆之荷重能力、勁度及延展性等行為都優於RNAC牆。就高溫後之RLAC牆而言,當鋼筋間距愈小,牆之降伏強度與極限強度愈高,但延展性愈差;鋼筋間距不同,對牆試體的開裂強度影響不大;就牆體尺寸效應而言,牆之寬度愈大則勁度愈大。這些現象均與未燒過之RNAC牆所已知之現象相同,顯示標準升溫過程未使RLAC牆喪失基本力學行為。
The main purpose of this research is to compare the basic mechanical properties between reinforced lightweight aggregate concrete walls (RLAC walls) and reinforced normal weight aggregate concrete walls (RNAC walls) subjected to horizontal loads after fire-resistance tests (ASTM Standard E119). The research parameters include steel spacing, lightweight/normalweight aggregates, wall sizes and with/without high temperatures. The influences of these parameters on the load-carrying capacities, stiffnesses, ductilities, and failure patterns of the walls are studied. The results indicate that after high temperature the load-carrying capacities, stiffnesses and ductilities of RLAC walls are all better than those of RNAC walls. When the steel spacing in RLAC walls after heating are smaller the yielding loads and ultimate loads are greater but the ductilities are worse. In regard to wall size effects, an increase of wall width will result in an increase of wall stiffness. All of these phenomena are the same as the already known phenomena in regular walls without heating. The heating process did not make RLAC walls lose the basic mechanical properties.
URI: http://hdl.handle.net/11455/15907
其他識別: U0005-3107200819185200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107200819185200
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.