Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15987
標題: 應用PIV與BIV量測系統於水躍流場特性之探討
Study on the Characteristics of Hydraulic Jump Flow Using PIV and BIV
作者: 林怡如
Lin, I-Ju
關鍵字: hydraulic jump
水躍
tow phases flow
PIV
BIV
turblent mixing layer
二相流
PIV
BIV
紊流混合層
出版社: 土木工程學系所
引用: 1. Bakhmeteff, B. A., and Matzke, A. E. (1935). “The hydraulic jump in terms of dynamic similarity.” Transactions, ASCE, 101, 630-680. 2. Chanson, H., and Brattberg, T. (2000). “Experimental study of the air-water shear flow in a hydraulic jump.” International Journal of Multiphase Flow, 26, 583-607. 3. Chow, V. T. (1973). Open-channel Hydraulics, The McGraw-Hill Book Companies, Inc., Singapore. 4. Cowen, E. A., and Monismith, S. G. (1997). “A hybrid digital particle tracking velocimetry technique.” Experiments in Fluids, 22, 199-211. 5. Hornung, H. G., Willert, C., and Turner, S. (1995). “The flow field downstream of a hydraulic jump.” Journal of Fluid Mechanics, 287, 299-316. 6. Hoyt, J. W., and Sellin, R. H. J. (1989). “Hydraulic jump as ‘mixing layer’.” Journal of Hydraulic Engineering, ASCE, 115(12), 1607-1614. 7. Lennon, J. M., and Hill, D. F. (2006). “Particle image velocity measurements of undular and hydraulic jumps.” Journal of Hydraulic Engineering, ASCE, 132(12), 1283-1294. 8. Leutheusser, H. J., and Kartha, V. C. (1972). “Effects of inflow condition on hydraulic jump.” Journal of the Hydraulics Division, ASCE, 98(HY8), 1367-1384. 9. Lin, C., Hsieh, S. C., Kuo, K. J., and Chang, K. A. (2008) “Periodic oscillation caused by a flow over a vertical drop pool.” Journal of Hydraulic Engineering, ASCE, 134(7), 948-960. 10. Lin, C., Hsieh, S. C., Kuo, K. J., and Chang, K. A. (2009) Closure to “Periodic oscillation caused by a flow over a vertical drop pool.” Journal of Hydraulic Engineering, ASCE (in press). 11. Liu, M., Rajaratnam, N., and Zhu, D. (2004). “Turbulence structure of hydraulic jumps of low Froude numbers.” Journal of Hydraulic Engineering, ASCE, 130(6), 511-520. 12. Long, D., Steffler, P. M., and Rajaratnam, N. (1990). “LDA study of flow structure in submerged hydraulic jump.” Journal of Hydraulic Research, IAHR, 28(4), 437-460. 13. Long, D., Rajaratnam, N., Steffler, P. M., and Smy, P. R. (1991). “Structure of flow in hydraulic jumps.” Journal of Hydraulic Research, IAHR, 29(2), 207-218. 14. Mehrotra, S. C. (1976). “Length of hydraulic jump.” Journal of the Hydraulics Division, ASCE, 102(HY7), 1027-1033. 15. Mossa, M., and Tolve, U. (1998). “Flow visualization in bubbly two-phase hydraulic jump.” Journal of Fluids Engineering, ASME, 120, 160-165. 16. Murzyn, F., Mouaze, D., and Chaplin, J. R., (2005). “Optical fibre probe measurements of bubbly flow in hydraulic jumps.” International Journal of Multiphase Flow, 31, 141-154. 17. Rajaratnam, N. (1965). “The hydraulic jump as a wall jet.” Journal of the Hydraulics Division, ASCE, 91(HY5), 107-132. 18. Rajaratnam, N., and Subramanya, K. (1968). “Profile of the hydraulic jump.” Journal of Hydraulics Division, ASCE, 94(HY3), 663–673. 19. Resch, F. J., Leutheusser, H. J., and Alemu, S. (1974). “Bubbly two-phase flow in hydraulic jump.” Journal of the Hydraulics Division, ASCE, 100(HY1), 137-149. 20. Rouse, H., and Ince, S. (1957). “History of hydraulics.” Iowa Institute of Hydraulic Research, State University of Iowa, Iowa City, Iowa. 21. Rouse, H., Siao, T. T., and Nagaratnam, S. (1958). “Turbulence characteristics of the hydraulic jump.” Journal of the Hydraulics Division, ASCE, 84(HY1), 1-30. 22. Ryu, Y., Chang, K. A., and Lim, H. J. (2005). “Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater.” Measurement Science and Technology, 16, 1945-1953. 23. Svendsen, I., Veeramony, J., Bakunin, J., and Kirby, J. (2000). “The flow in weak turbulent hydraulic jumps.” Journal of Fluid Mechanics, 418, 25-57. 24. 林 呈、謝世圳、高明哲、徐華勇(2004),「應用PIV及FLDV同步量測技術於圓柱近域尾流平均速度場特性之探討」,中國土木水利工程學刊,第16卷,第1號,第80 - 98頁。 25. 陳逸芬(2008),「應用PIV於水躍速度場之分析探討」,碩士論文,國立中興大學土木工程研究所,台中。 26. 謝世圳(2008),「建置具高時間解析度之PIV系統並應用於圓柱近域尾流特性之探討」,博士論文,國立中興大學土木工程研究所,台中。
摘要: 水躍流場往往伴隨著大量氣泡捲增之現象,過去的研究少有針對流場中氣泡區之特性進行探討。本研究嘗試結合質點影像測速儀(簡稱PIV)與氣泡影像測速儀(簡稱BIV)量測技術,針對水躍流場中非氣泡區與氣泡區進行量測,配合流場可視化之定性觀察,進一步對平均速度場、紊流特性、氣泡於混合層之運動情形及相似性分析加以探討。 本研究主要針對未完全發展來流條件下的ㄧ組弱水躍和三組穩定水躍之流場特性進行量測與分析,並依水躍流場之定性與定量特性,將水躍流場區分為自由來流尚未受底床邊界及水躍流場影響之核心區、受底床影響之邊界層、中央部份之混合層及水表面附近之迴流區等四個部份,並針對各區之相關特性進行探討。 流場中氣泡區水平平均速度剖面之相似性分析,本研究特採用以混合層為水躍流場中心之觀點,即將氣泡速度剖面座標中心平移至混合層中心,並分別以混合層之代表性厚度 及最大與最小速度差值 作為無因次化用的特徵長度尺度與速度尺度進行相似性分析,結果顯示混合層內有明顯之流場相似性,且相似曲線可以一個震盪函數與視窗函數組合的方程式表示之。 此外,本研究另針對氣泡於穩定水躍混合層流場中的運動情形進行觀測與描述,並探討氣泡速度與負載氣泡之流場速度間的關係,可知氣泡於高度紊亂之混合層流場中,由於氣泡運動方向隨水流雜亂無章,致使其缺乏形成平衡速度之空間,造成氣泡的平均速度明顯較該處之水流平均速度為慢,根據量測結果,於水躍混合層下緣處氣泡與水流速度差之比例約0.6 ~ 0.8倍。至於BIV量測系統之準確性及景深控制、影像平均法等技術,於水躍流場量測上之可行性,本文亦有所探討。
Hydraulic jumps have been investigated extensively for several decades. Many previous studies concentrated on the energy dissipation, jump length, water surface profile, and velocity profile out of the aerated region. However, a hydraulic jump usually entrains air bubbles in the roller region, making it hard to measure in this region due to many technical difficulties. The objective of the present study is to investigate the flow structure in the aerated region using BIV, and the flow structure outside the aerated region using PIV. The mean flow and turbulence properties were obtained by ensemble averaging a large number of repeated instantaneous velocity measurements. The characteristics of velocity fields of one weak jump and three steady jumps with undeveloped approach flows were investigated. Based upon the data obtained by PIV, BIV and flow visualization technique, the flow in hydraulic jump could be classified into four regions as: (i) potential core, (ii) boundary layer, (iii) mixing layer and (iv) recirculation region. These four regions can be separated and defined clearly by mean velocity field. This classification of flow field can well demonstrate the characteristics of mean velocity or turbulence in hydraulic jumps. In the aerated region of the weak jump, the characteristics of streamwise bubble mean velocity profiles can be described by the center point of mixing layer b, the representative mixing layer width, (yumin - yumax), and error value between the maximum and minimum bubble velocity, (umax - umin). The similarity of the bubble velocity profile in aerated region can be established by plotting of (y - b)/(yumin - yumax) versus (u - umin)/ (umax - umin). Furthermore, the results show that the locations of occurrence of the maximum bubble velocity are coincident with those of the maximum water velocity. The ratio between the maximum bubble velocity and the maximum water velocity is almost constant and equal to 0.6 ~ 0.8.
URI: http://hdl.handle.net/11455/15987
其他識別: U0005-1708200920544100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708200920544100
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.