Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16026
標題: 依有限量測之建築結構層間損壞自動化偵測
Automatic damage localization for buildings based on incomplete measurements
作者: 梁晉得
Liang, Chin-Te
關鍵字: 有限量測
incomplete measurements
系統識別
損壞評估
模糊推論
damage localization
experimental verification
fuzzy inference system
出版社: 土木工程學系所
引用: 1.Ljung, L., System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987. 2.Juang, J. N., Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ, 1994. 3.Juang, J. N., Cooper, J. E., and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations(ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14, 1988. 4.Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W., “Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments”, Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, pp. 320-329, 1993. 5.Juang, J. N., “State-Space System Realization with Input- and Output-Data Correlation”, NASA Technical Paper 3622, 1997. 6.林其璋, 吳侑霖, 王傑兒, “應用地震記錄之建築結構系統識別”, 88年「電子計算機於土木水利工程應用」研討會論文集, 第1卷, 第 271-278頁, 2000. 7.Doebling, S. W., Farrar, C. R., Prime, M. B., Shevitz, D. W., “Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Vibration Characteristics: A Literature Review”, Tech Rep.LA-13070-MS, Los Alamos National Laboratory, Los Alamos, N.M., 1996. 8.Pandey, A. K., Biswas, M., Samman, M. M., “Damage Detection from Changes in Curvature Mode Shapes”, Journal of Sound and Vibration, Vol. 145, No. 2, pp. 321-332, 1991. 9.Pandey, A. K., Biswas, M., “Damage Detection in Structures using Changes in Flexibility”, Journal of Sound and Vibration, Vol. 169, No. 1, pp. 3-17, 1994. 10.Farrar, C. R., Jauregui, D. A., “Comparative Study of Damage Identification Algorithms Applied to a Bridge”, Smart Materials and Structures, Vol. 7, pp. 704-731, 1998. 11.Allemang, R. J., Brown, D. L., “A Correlation Coefficient for Modal Vector Analysis”, Proceeding of International Modal Analysis Conference & Exhibit, pp. 110-116, 1982. 12.Lieven, N. A., Ewins, D. J., “Spatial Correlation of Mode Shapes, the Coordinate Modal Assurance Criterion (COMAC)”, Proceeding of the sixth International Modal Analysis Conference, pp. 690-695, 1988. 13.Kim, H. S., and Chun, Y. S., “Structural Damage Assessment of Building Structures Using Dynamic Experimental Data”, Structural Design of Tall and Special Buildings, Vol. 13, pp. 1-8, 2004. 14.Kim, J. T., Ryu, Y. S., Cho, H. M., and Stubbs, N., “Damage Identification in Beam-Type Structures: Frequency-Based Method vs Mode-Shape-Based Method”, Engineering Structures, Vol. 25, pp. 57-67, 2003. 15.Lin, C. C., Wang, C. E., Wu, H. W., Wang, J. F., “On-Line Building Damage Assessment Based on Earthquake Records”, Smart Materials and Structures, Vol. 14, pp. 137-153, 2005. 16.Bernal, D., “Load Vector for Damage Localization”, Journal of Engineering Mechanics, Vol. 128, pp. 7-14, 2002. 17.Bernal, D., Gunes, B., “Flexibility Based Approach for Damage Characterization: Benchmark Application”, Journal of Engineering Mechanics, Vol. 130, pp. 61-70, 2003. 18.Yong, G., Spencer, BF., “Damage localization under ambient vibration using changes in flexibility”, Journal of Earthquake Engineering and Engineering Vibration, Vol. 1, pp. 136-144, 2002. 19.Duan, Z.D., Yan, G.R., Ou, J.P., Spencer, BF., “Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs”, Structural Control and Health Monitoring, Vol. 14, pp. 186-196, 2007. 20.林裕家, “利用地震反應資料進行結構全域及局部性損害評估”, 國立台灣大學土木工程研究所碩士論文, 2007. 21.�哲維, “DLV法在結構破壞偵測之應用”, 國立交通大學土木工程研究所碩士論文, 2008. 22.Wang, J. F., Lin, C. C., Yen, S. M., “Story Damage Index of Seismically-Excited Buildings Based on Modal Parameters”, 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China, 2005. 23.Wang, J. F., Lin, C. C., “Damage Assessment of Irregular Building Using an Innovative Story Damage Index”, International Workshop on Structural Health Monitoring and Damage Assessment, pp. III-1~III-27, Taichung, Taiwan, R.O.C., December 14-15, 2006. 24.Wang, J. F., Lin, C. C., Yen, S. M., “A Story Damage Index of Seismically- Excited Buildings Based on Modal Frequency and Mode Shapes”, Engineering Structure, Vol. 29, pp. 2143-2157, 2007. 25.顏士閔, “依識別模態參數之建築結構層間損壞指標”, 國立中興大學土木工程研究所碩士論文, 2005. 26.楊淳皓, “扭轉耦合建築結構受震層間損壞指標”, 國立中興大學土木工程研究所碩士論文, 2006. 27.Morita, K., Teshigawara, M., Hammaoto, T., “Detection and Estimation of Damage to Steel Frames through Shaking Table Tests”, Structural Control and Health Monitoring, Vol. 12, pp. 357-380, 2005. 28.Zadeh, L. A. “Fuzzy Sets”, Inform. Control, Vol. 8, pp. 338-353, 1965. 29.MATLAB: Fuzzy Logic Toolbox. The Math Works, Inc., Natick, Massachusetts; 2000. 30.盧煉元, 林錦隆, “模糊控制器於半主動摩擦阻尼器減震應用之探討”, 中國土木水利工程學刊, 第20卷, 第81-95頁, 2008. 31.Lin, C. C., and Soong, T. T., et al, “Machine Diagnostics by Inverse Filtering Techniques”, In Proceedings of the First International Machinery Monitoring and Diagnostics Conference, pp. 155-160, Las Vegas, Nevada, U.S.A., Sep. 11-14, 1989. 32.Lin, C. C., et al, Method and Apparatus for Diagnostics the State of a Machine, United State Patent No. 4-980-844, Dec. 25, 1990. 33.王哲夫, “被動調諧質量阻尼器之最佳設計暨應用”, 國立中興大學土木工程研究所碩士論文, 1993. 34.翁駿民, “不規則樓房受地震作用之系統識別暨減震設計”, 國立中興大學土木工程研究所博士論文, 1998. 35.Ueng, J. M., Lin, C. C., Lin, P. L., “System Identification of Torsionally Coupled Buildings”, Computers and Structures, Vol. 74, pp. 667-686, 2000. 36.Chopra, A. K., Dynamics of Structures: Theory and Applications to Earth- quake Engineering, Prentice-Hall, New Jersey, U.S.A., 2001. 37.劉勛仁, “依唯結構反應量測之系統模態參數識別”, 國立中興大學土木工程研究所碩士論文, 2008. 38.Yuan, P., Wu Z., Ma, X., “Estimated Mass and Stiffness Matrices of Shear Building from Modal Test Data”, Earthquake Engineering and Structural Dynamics, Vol. 27, pp. 415-421, 1998. 39.Chakrverty, S., “Identification of Structural Parameters of Multistory Shear Buildings from Modal Data”, Earthquake Engineering and Structural Dynamics, Vol. 24, pp. 543-554, 2005. 40.Hegde, G., Sinha, R., “Parameter Identification of Torsionally coupled Shear Buildings from Earthquake Response Records”, Earthquake Engineering and Structural Dynamics, Vol. 37, pp. 1313-1331, 2008.
摘要: 本研究發展建築結構層間損壞評估法,可利用結構有限量測訊號,識別模態頻率變化並建立圖像並與利用初始結構資訊建立之圖像比對,即可進行層間損壞評估。本方法首先需求得結構初始狀態之完整系統參數,並以建立對應結構層間損壞位置之圖像資料庫(MSER),後續針對此結構進行監測時,僅需由單一樓層量測資訊識別結構模態頻率,再比較損壞前後模態頻率變化,建立頻率變化圖像(SFCR),利用模糊推論系統等方式進行自動化圖像辨識,以偵測層間損壞位置,並估算其損壞程度。本文針對剪力平面結構及扭轉耦合剪力結構進行數值模擬,探討損壞程度與偏心對於層間損壞偵測結果之影響,並界定本法之限制與適用性。最後利用國家地震工程研究中心標竿結構振動台試驗紀錄,藉由構架之差異模擬損壞前後之建築結構,應用SRIM系統識別技巧進行模態參數識別,並進行層間損壞偵測法之驗證,其結果顯示本方法可成功偵測結構損壞情況。
This study presents an automatic damage localization technique to identify the location of damage for buildings based on dominant frequencies shifts through incomplete measurements. First, the pattern of modal properties of an original (undamaged) building is established. Then, its pattern of dominant modal frequencies changes is obtained after earthquake excitations. The location of damage is identified through comparison of these two patterns. In general, a damage detection that requires only the change in dominant frequencies would be reliable and robust because dominant frequencies are a global measure of structural characteristics. The technique is able to evaluate a building health condition by using only one floor measurements. Moreover, a fuzzy inference system (FIS) is applied to develop the pattern recognition system. The main advantage of the FIS is its inherent robustness and ability to handle nonlinearities and uncertainties in a system. Finally, a multi-story steel frame is considered to examine the proposed damage localization technique via numerical simulation and experimental data. The advantages and limitations of the damage localization technique are also investigated.
URI: http://hdl.handle.net/11455/16026
其他識別: U0005-2007200916465300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007200916465300
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.