Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16038
DC FieldValueLanguage
dc.contributor賴泉基zh_TW
dc.contributor賴進松zh_TW
dc.contributor.advisor盧昭堯zh_TW
dc.contributor.author何淑君zh_TW
dc.contributor.authorHo, Shu-Chunen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:54:55Z-
dc.date.available2014-06-06T06:54:55Z-
dc.identifierU0005-2008200914233000zh_TW
dc.identifier.citation1. 王南海、張文捷及王玢(1999),「新型護岸技術-四面六邊透水框架群在長江護岸工程中的應用」,長江科學院院報,第二卷。 2. 吳龍華、周春天、嚴忠民(2003),「架空率桿件長寬比對四面六邊透水框架群減速促淤效果的影響」,水利水運工程學,第74 - 77頁。 3. 周根娣、顧正華、高柱、唐洪武(2005),「四面六邊透水框架尾流場水力特性」,長江科學院院報,第二期,第三卷。 4. 房世龍、唐洪武、王志良及蔡開璽(2005),「透水框架佈設形式對橋墩局部沖刷防護的影響」,人民長江期刊,第三十六期,第七卷。 5. 林呈(1999),「跨河構造物防制沖刷之技術與策略研究」(應用剛性或柔性攔砂堰作為橋基保護方法之評估探討),行政院公共工程委員會專案研究計畫。 6. 林呈與褚炳麟(2000),「橋基跌水或水躍沖刷防制設計指引」,財團法人中興工程顧問社。 7. 林呈、莊仁合及謝世圳(2002),「垂直式跌水靜水池內週期性振盪流特性之實驗探討」,中國土木水利工程學刊,第十五期,第107 - 124頁。 8. 徐國賓與張耀哲(2006),「混凝土四面六邊透水框架群技術在河道整治、護岸及搶險中的應用」,天津大學學報,第三十九期,第十二卷。 9. 張文捷、王南海、王玢及麻夏(1999),「四面六邊透水框架群應用於長江護岸固腳工程實例及設計要點」,江西省水利科學研究所。 10. 章平平與張志樂(2001),「混凝土四面六邊透水框架在壩下消能設計中的應用」,水利技術監督,第二期,第42 - 46頁。 11. 彭思顯(1994),「投潭水作用下局部沖刷之動態研究」,碩士論文,國立中興大學土木工程研究所。 12. 經濟部水利署水利規劃試驗所(2005),「河道水工構造物保護工法試驗研究總報告」。 13. 盧昭堯、賴進松及林詠彬(2008),「河道固床工破壞機制與減沖促淤新工法研擬」,經濟部水利署水利規劃試驗所委託研究計畫成果報告。 14. Bormann, N.E. and Julien, P.Y., (1991) "Scour Downstream of Grade-Control Structures" Journal of Hydraulic Engineering, ASCE, vol.117(5), 579-594. 15. Breusers, H.N.C. and Raukivi, A.J., (1991) "Scouring" A.A. Balkema, 123-142. 16. Chanson, H., (1994) "Comparison of Energy-Dissipation between Nappe and Skimming Flow Regimes on Stepped Chutes" Journal of Hydraulic Research, vol.32(2), 213-218. 17. Christodoulou, G.C., (1993) "Energy-Dissipation on Stepped Spillways" Journal of Hydraulic Engineering, ASCE, vol.119(5), 644-650. 18. Dey, S. and Sarkar, A., (2006) "Scour downstream of an apron due to submerged horizontal jets" Journal of Hydraulic Engineering, ASCE, vol.132(3), 246-257. 19. Ding, B., Chiew, Y.M., and Tang, H.W., (2006) "Scour protection around bridge piers using tetrahedron frames" Proceedings Third International Conference on Scour and Erosion, Amsterdam, Netherlands. 20. Farhoudi, J. and Smith, K.V.H., (1985) "Local Scour Profiles Downstream of Hydraulic Jump" Journal of Hydraulic Research, vol.23(4), 343-358. 21. Gaudio, R., Marion, A., and Bovolin, V., (2000) "Morphological effects of bed sills in degrading rivers" Journal of Hydraulic Research, vol.38(2), 89-96. 22. Melville, B.W., and Coleman, S.E., (2000) "Bridge Scour", Water Resources Publications, LLC., 193-196. 23. Oliveto, G., Comuniello, V., and Onorati, B., (2008) "Temporal development of local scour downstream of positive-step stilling basins", River flow 2008, vol.2, 1673-1678. 24. Pagliara, S., (2007) "Influence of sediment gradation on scour downstream of block ramps" Journal of Hydraulic Engineering, ASCE, vol.133(11), 1241-1248. 25. Pagliara, S. and Chiavaccini, P., (2006) "Energy dissipation on block ramps" Journal of Hydraulic Engineering, ASCE, vol.132(1), 41-48. 26. Pagliara, S. and Palermo, M., (2008) "Scour control and surface sediment distribution downstream of block ramps" Journal of Hydraulic Research, vol.46(3), 334-343.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16038-
dc.description.abstract台灣西部許多河川河床嚴重下降,河川及橋樑管理單位經常構築固床工,以穩定河床及減少橋墩基礎之沖刷。 本研究主要係探討固床工下游之跌水與水躍沖刷。首先,在清水沖刷之極限條件下,採砂質與礫質兩種底床質粒徑,配合兩種河床坡降、兩種固床工坡度及三種流量,進行未保護情形之試驗。其次,參考未保護之沖刷坑長度,鋪設透水四面體框架群,藉由室內試驗,探討沖刷坑之形態及其保護效果。 未保護之試驗結果顯示,固定流量條件下,沖刷坑形態可於短時間內接近平衡狀態。此外,一般而言沖刷深度隨水流強度及河床坡度之增加而增加,且平衡最大沖刷發生位置均頗靠近上游固床工,此將對固床工造成威脅。 在固床工下游鋪設透水四面體框架群之保護效果方面,保護之沖刷深度明顯低於未保護之沖刷深度。此一結果表示,透水四面體框架群可減輕水流沖刷力,並將泥砂顆粒囚禁於其鄰近下游處,發揮減沖促淤之功效。zh_TW
dc.description.abstractIn the west of Taiwan, bed elevations of many rivers lowered down seriously. River and bridge management bureaus often construct grade-control structures to stabilize the riverbeds and reduce the scouring of the pier foundations. This research is mainly aimed at the edge failures downstream of the grade-control structures. Firstly, a series of experiment was conducted under the limit condition of clear-water with sand and gravel, two riverbed slopes, two ramp slopes for the grade-control structures, and three flow discharges. Based on the measured lengths of the scour holes for the non-protected conditions, the tetrahedron frames were covered on the sand bed downstream of the grade-control structures. Indoor experiments were then carried out to investigate the scour hole shapes and the effectiveness of this type of scour reduction device. The results of the non-protected experiments show that under a given flow discharge, the shape of scour hole could reach the equilibrium state in a short time. In addition, generally the scour depth increases with an increase of the flow intensity or the riverbed slpoe. Moreover, the maximum equilibrium scour depth usually occurs very close to the upstream grade-control structure, which is a threat to the grade-control structure. With protection of tetrahedron frame downstream of the grade-control structure, the scour depth is obviously lower than that without protection. The results indicate that the tetrahedron frames could reduce the flow velocities, trap the sediment particles within the protected region, and effectively reduce the scour depth.en_US
dc.description.tableofcontents目錄 中文摘要.............................................................I Abstract............................................................II 目錄...............................................................III 圖目錄...............................................................V 表目錄............................................................VIII 照片目錄............................................................IX 符號說明.............................................................X 第壹章 前言..........................................................1 1.1 研究動機.........................................................1 1.2 研究目的.........................................................3 1.3 研究內容.........................................................4 1.4 內容組織.........................................................5 第貳章 文獻回顧......................................................6 2.1 多階跌水工消能效果...............................................6 2.2 固床工下游沖刷...................................................8 2.3 固床工沖刷公式之研究............................................13 2.4 透水框架沖刷防護工法............................................16 第參章 理論分析.....................................................22 3.1 沖刷坑之演變....................................................22 3.2 沖刷坑深度之變化.................................................23 第肆章 試驗方法.....................................................26 4.1 試驗設備........................................................26 4.2 試驗條件規劃....................................................30 4.3 試驗佈設........................................................34 4.4 試驗方法與步驟..................................................34 第伍章 結果與討論...................................................39 5.1 無保護工之沖刷坑試驗結果........................................40 5.2 有保護工之沖刷坑試驗結果........................................60 第陸章 結論與建議...................................................69 6.1 結論............................................................69 6.2 相關建議........................................................70 參考文獻............................................................72 附錄................................................................76 圖目錄 圖1-1 固床工下游面與河床交接處之跌水或水躍沖刷.....................3 圖2-1 (a)多階跌水工示意圖(b)無因次能量差與沖刷深之關係圖...........7 圖2-2 水躍下游沖刷流場示意圖.......................................8 圖2-3 無因次之沖刷坑剖面曲線示意圖................................11 圖2-4 固床工間距內沖刷坑示意圖....................................14 圖2-5 塊石斜坡道沖刷示意圖........................................16 圖2-6 透水四面體框架..............................................17 圖2-7 四面體佈置形式(a)透水鈍端(b)透水尖端(c)實體鈍端(d)實體尖端..18 圖2-8 桿件長寬比與減速率關係曲線..................................19 圖2-9 赤心堤汛後淤積實況..........................................20 圖2-10 透水四面體(a)未保護(b)保護橋墩局部沖刷河床等高線比較........21 圖3-1 無因次化沖刷坑特徵長度與時間變化之關係......................22 圖3-2 固床工下游平衡沖刷坑........................................23 圖3-3 溢洪道示意圖................................................24 圖4-1(a)輸砂試驗水槽主體側視圖......................................27 圖4-1(b)輸砂試驗水槽主體俯視圖......................................27 圖4-2(a)固床工模型坡度1/7...........................................32 圖4-2(b)固床工模型坡度1/4...........................................32 圖4-3 桿件長寬比與減速率關係曲線..................................33 圖4-4 透水四面體框架群佈設完成情形................................33 圖4-5 室內試驗佈設示意圖..........................................34 圖4-6 試驗樣砂之粒徑分析結果......................................35 圖4-7 試驗水槽之流量率定曲線圖....................................36 圖4-8 試驗流程圖..................................................38 圖5-1 固床工下游沖刷坑之演變過程(2R7-5)...........................42 圖5-2 平衡沖刷坑剖面(Sb=1%).......................................46 圖5-3 平衡沖刷坑剖面(Sb=0.1%).....................................47 圖5-4 平衡沖刷坑剖面(Sb=1%).......................................47 圖5-5 平衡最大沖刷深度實測值與推估值之比較........................49 圖5-6 無因次平衡最大沖刷發生位置實測值與推估值之比較..............50 圖5-7 無因次平衡最大沖刷坑長度實測值與推估值之比較................50 圖5-8 無因次化平衡沖刷坑剖面形態(D50=1.3 mm ).....................51 圖5-9 無因次化平衡沖刷坑剖面形態(D50=2.7 mm ).....................52 圖5-10 沖刷深度實測值與預測值之比較(Srm=0.25, D50=1.3 mm)..........53 圖5-11 沖刷深度實測值與預測值之比較(Srm=0.143, D50=1.3 mm).........54 圖5-12 沖刷深度實測值與預測值之比較(Srm=0.25, D50=2.7 mm)..........55 圖5-13 沖刷深度實測值與預測值之比較(Srm=0.143, D50=2.7 mm).........56 圖5-14 尾水深實測值與推估值之比較..................................58 圖5-15 尾水位置圖..................................................58 圖5-16 平衡最大沖刷深度之尾水深實測值與推估值比較..................59 圖5-17 保護工鋪設長短與未保護之沖刷坑剖面比較......................60 圖5-18 佈設透水四面體群之平衡沖刷坑剖面(P2R7-5)....................62 圖5-19 保護及未保護之平衡沖刷坑剖面(2R7-5).........................63 圖5-20 保護及未保護之平衡沖刷坑剖面(2R7-3).........................66 圖5-21 保護及未保護之平衡沖刷坑剖面(2R4-6).........................66 圖5-22 保護及未保護之平衡沖刷坑剖面(1R4-3).........................66 圖5-23 保護及未保護之平衡沖刷坑剖面(1R7-6).........................67 圖5-24 無因次最大沖刷深度比較圖....................................68 表目錄 表1-1 西部河川柔性固床工受損災因調查表.............................2 表2-1 粗糙度條件..................................................15 表2-2 相對能量差公式之參數值......................................15 表5-1 無保護工之沖刷坑試驗結果資料表..............................40 表5-2 固床工下游之沖刷坑示意圖....................................43 表5-3 固床工下游某一時刻之沖刷示意圖(2R7-5).......................45 表5-4 有保護工之沖刷坑試驗結果資料表..............................61 表5-5 沖刷坑之幾何形態比較結果....................................65 照片目錄 照片4-1 透明壓克力固床工............................................28 照片4-2 Sony數位錄影機攝錄..........................................29 照片4-3 針尺滑動台車................................................29 照片4-4 地形整平器..................................................30 照片5-1 固床工下游沖刷坑隨時間之演變過程............................41 照片5-2 保護工鋪設長度(a) 26 cm (b) 128 cm..........................60 照片5-3 透水四面體框架群部份損毀....................................64zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200914233000en_US
dc.subjectgrade-control structureen_US
dc.subject固床工下游zh_TW
dc.subjecttetrahedron framesen_US
dc.subjectscouren_US
dc.subject透水四面體框架群zh_TW
dc.subject沖刷坑形態zh_TW
dc.subject沖刷深度zh_TW
dc.title透水框架群應用於固床工下游沖刷保護之研究zh_TW
dc.titleProtection of scour downstream of a grade control structure using tetrahedron framesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:土木工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.