Please use this identifier to cite or link to this item:
標題: 使用雙音圈致動喇叭於管路之適應性主動噪音控制
Adaptive Active Noise Control in Ducts with Dual Voice Coil Speaker Actuator
作者: 廖慶文
Liao, Ching-Wen
關鍵字: Active noise control
Adaptive algorithm
Commutation error
Dual voice coil speaker
Face velocity sensor
出版社: 機械工程學系所
引用: 參考文獻 [1] Lueg, P., “Process of Silencing Sound Oscillations”, U.S. Patent, No. 2043416, 1936. [2] Kuo, S. M. and Morgan, D. R., “Active Noise Control Systems: Algorithms and DSP Implementations”, John Wiley & Sons, Singapore,1996. [3] Hull, A.J., Radcliffe, C.J., Miklavic, M. and MacCluer, C.R., “State Space Representation of The Nonself-Adjont Acoustic Duct System”, ASME Journal of Vibration and Acoustics Vol. 112 (1990), pp. 483-488. [4] Lin, J.-Y. and Luo, Z.-L., “Internal Model-Based Design of Robust Active Noise Controllers for An Acoustic Duct System”, IEEE Transactions on Control Systems Technology, Vol. 8, No. 5, pp. 864-872,2000. [5] Lin, J.-Y. and Ke, J.-H., “Application of Damped-Oscillation Control Signals for Wide-Band Feedback Active Noise Control in Acoustic Ducts”, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 46, No. 1, pp. 168-175,2003. [6] Lane, S. A. and Clark, R. L., “Dissipative Feedback Control of A Reverberant Enclosed Using A Constant Volume Velocity Source”, ASME Journal of Vibration and Acoustics, Vol. 120, No. 4, pp. 987-993,1998. [7] Lane, S. A. and Clark, R. L., “Improving Loudspeaker Performance for Active Noise Control Applications”, Journal of the Audio Engineering Society, Vol. 46, No. 6, pp. 508-519,1998. [8] Radcliffe, C. J. and Gogate, S. D., “Velocity Feedback Compensation of Electromechanical Speakers For Acoustic Applications, International Federation of Automatic Control”, Triennial World Congress,1996. [9] Birdsong, C. B. and Radcliffe, C. J., “A Compensated Acoustic Actuator for Systems with Strong Dynamic Pressure Coupling”, ASME Journal of Vibration and Acoustics, Vol. 121, pp. 89-94,1999. [10] Adams, G. J. and Yorke, R., “Motional Feedback in Loudspeaker Systems, Monitor”, Vol. 37, No. 3, pp. 85-92,1976. [11] Usagawa, T., Okawa, Y., Nishimura, Y., Ebata, M. and Okda, J., “Active Noise Control System Using Motional Feedback Loudspeaker”, Proc. Int. Symp. Active Control of Sound Vib., pp. 249-254, 1991. [12] Qifu Fan, Kenzo Nonami, and Mitsuo Nnkano, “Active Noise Control of Exhaust Duct Using Two-Degree-of-Freedom Control System with Model Matching”, JSME International Journal, Series C, Vol. 40, No.2, pp. 203-208, 1997. [13] Hu, J.S., Yu, S.H. and Hsieh, C.S., “Application of Model-Matching Techniques to Feedforward Active Noise Controller Design”, IEEE Transactions on Control Systems Technology, Vol.6, No.1, pp. 33-42, January 1998. [14] Widrow ,B. and Sterns, S. D. “Adaptive Singals Processing”, Prentice Hall, Englewood Cliffs, N. J. , 1985. [15] Burgess, J.C. “Active Adaptive Sound Control in a Duct: A Computer Simulation”, J. Acoust. Soc. Am. 70, pp. 715-726, 1981. [16] Michael P. Nowak and Barry D. Van Veen, “A Constrained Transform Domain Adaptive IIR Filter Structure for Active Noise Control”, IEEE Transactions on Speech and Audio Processing, Vol. 5, No. 4, pp. 334-347, July 1997. [17] Kook Hyun Yim, Jong Boo Kim, Tae pyo Lee, Doo Soo Ahn, “Genetic Adaptive IIR Filtering Algorithm for Active Noise Control”, IEEE international Fuzzy Systems Conference Proceedings , Seoul , Korea, August 22-25 , pp. 1723-1728, 1999. [18] Fan Jiang, Hiroyuki Tsuji, Hiromitsu Ohmori, and Akira Sano, “Adaptation for Active Noise Control”, IEEE Control Systems, pp. 36-47, Decemeber 1997. [19] 陳俊杰, 含喇叭動態效應聲管的主動噪音前饋控制器設計與實作, 國立中興大學機械工程研究所, 碩士論文, 1999年 [20] Åström, K. J. and Wittenmark, B., “ Adaptive Control”, New York: Addison Wesley,1995. [21] Rugh, Wilson J., “Linear System Theory (2nd ed.)”, Englewood Cliffs, NJ: Prentice-Hall,1996. [22] Sun, X. and Chen, D.-S., “A New Infinite Impulse Response Filter-based Adaptive Algorithm For Active Noise Control”, Journal of Sound and Vibration, Vol. 258, No. 2, pp. 385-397,2002.
摘要: 本文率先推導喇叭聲管系統的新第二路徑數學模式和雙音圈喇叭的新面速度感測器,並且以新第二路徑數學模式為基礎結合了主動噪音控制(ANC)與喇叭振速控制(FVC),設計出使用改良的濾波遞迴式最小平方誤差法(FxRLS)之適應性回饋式音壓振速(ANC/FVC)控制器。實驗顯示搭配速度感測器之適應性回饋式音壓振速控制器的消音性能比使用傳統回饋式音壓控制器還要好。本文中也定義一交換誤差(CE)並且加入到傳統殘留誤差行形成新殘留誤差來改善適應性演算法的收斂速度,使用新殘留誤差推導出了有限脈衝響應(FIR)濾波器與無限脈衝響應(IIR)濾波器之適應演算法的新適應性演算法分別為: FxLMS/CE、 FxRLS/CE 和 FuRLS/FRE+CE 演算法,並且以離散時間的 Lyapunov 穩定性準則來證明演算法的收斂性,電腦模擬與實驗也顯示新演算法免除以往濾波器的參數必須緩慢更新的條件。
A novel secondary-path model of speaker-duct systems and a face velocity sensor of dual voice coil speakers are first developed in this study. A combined design of active noise control (ANC) and face velocity control (FVC) based on the identified secondary-path model is further proposed to set up an adaptive feedback ANC/FVC controller with a modified filtered-X recursive least square (FxRLS) algorithm for ANC applications. Experiments show that the feedback ANC/FVC controller with the developed velocity sensor can achieve better performance as compared to that of a FIR filter with the conventional FxRLS algorithm. A commutation error (CE) is then considered in addition to the conventional residual error to generate the innovative residual error. Such an error is applied into cost functions to derive finite impulse response (FIR) and infinite impulse response (IIR) filter-based adaptive algorithms for ANC applications, referred to as FxRLS/CE and FuRLS/FRE+CE algorithms, respectively. Convergence analyses based on Lyapunov stability criteria for time-varying discrete-time systems can be carried out for the FxLMS/CE, FxRLS/CE and FuRLS/ FRE+CE algorithms to ensure stability. Computer simulations and experiments demonstrate that the innovative residual error-based adaptive algorithms can free the restriction of the slow-adaptation assumption in the conventional ANC approaches.
其他識別: U0005-1506200614322100
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.