Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16128
標題: 輕質骨材混凝土預鑄牆接頭試體之耐火性能
Fire Resistence of Connections of Precast Lightweight Aggregate Concrete Wall
作者: 游凱舜
You, Kai-Shun
關鍵字: 預鑄牆接頭
connections for precast walls
輕質混凝土
常重混凝土
高溫火害
荷重能力
延展性
破壞模式
reinforced lightweight aggregate concrete (RLAC)
reinforced normalweight aggregate concrete (RNAC)
fire-resistance tests
load-carrying capacity
ductility
failure modes
出版社: 土木工程學系所
引用: 1. 顏 聰、陳豪吉“輕質骨材混凝土” ,中華輕質骨材協會,2005。 2. 李名浩,「旋窯燒製水庫淤泥輕質骨材之研究」,國立中興大學土木工程學系碩士論文,2003。 3. J. J. Shideler, “Lightweight Aggregate Concrete for Structural USE”, ACI Journal October 1957. 4. Spratt, H., “The Structural Use of Lightweight Aggregate Concrete”, C. C. A., New York, N. Y. 1974. 5. Weigler, H., “Gefuegedichter Leichtbeton”, Beton, PP. 292, 1972. 6. 顏 聰、林宜清、黃玉麟、陳豪吉,”輕質混凝土配比設計及拌製技術之研究”, 財團法人臺灣營建研究中心研究計畫報告,1994。 7. 顏 聰、王櫻茂、蕭江碧、林純正、周智中、黃玉麟等,”傳統工業技術開發計畫-混凝土輕質骨材技術發展及應用”,經濟部工業局八十二年度專案計畫執行成果報告,1993。 8. 顏 聰、曾元一、王櫻茂、黃玉麟等,”人造骨材輕質混凝土之製造及工業化研究”,財團法人臺灣營建研究中心報告書,1993。 9. 顏 聰、林宜清、黃玉麟、陳豪吉,”輕質骨材混凝土之澆置及夯實施工研究”,中華高科技研究發展協會研究計畫報告,1995。 10. Hwang, C.L.,R.Y. Lin, K.M. Hsu, and J.F. Chan, "Granulation of Fly Ash Lightweight Aggregate and Accelerated Curing Technology," Fourth CANMET-ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, pp.419~438 ,1992 。 11. 黃兆龍,郭淑德,「煤灰輕質骨材性質、製造及應用開發研究」,國立台北工業技術學院營建系與台灣電力公司建教合作報告,1992。 12. 林銅柱,“從國外輕質骨材科技展望國內輕質混凝土工業”,高壓蒸氣養護輕質混凝土研討會,經濟部工業局,台北,1991. 13. Bardhan-Roy, B. K., “Lightweight Aggregate Concrete in UK”, International Symposium on Structural Lightweight Aggregate Concrete, Norway, June 1995. 14. Helgesen, Kjell Hakon, “Lightweight Aggregate Concrete in Norway”, International Symposium on Structural Lightweight Aggregate Concrete, Norway, June 1995. 15. V.V. Bertero, E. P. Popov and B. Forzani, “Seismic Behavior of Lightweight Concrete Beam-Column Subassemblages,” ACI Journal, Jan.-Feb. 1980, PP.44-52. 16. Sekhniakshivile, E.A.,”On the Effective Use of Light Concrete and Reinforced Concrete in Construction in Seismic Regions,” Proceedings, Sixth World Conference on Earthquake Engineering (New Delhi, Jan. 1997), V.3, PP.2034-2024. 17. Paramzim, A.M., and Gorovitz, I. G., “Analysis of Lightweight Concrete Use in Seismic-Resistant Multistory Buildings,” Proceedings, Sixth World Conference on Earthquake Engineering (New Delhi, Jan. 1997), V.3, PP.2124-2125. 18. Bertero, V. V., and Popov, E. P., “Seismic Behavior of Ductile Moment-Resisting Reinforced Concrete Frames,” Reinforced Concrete Structures in Seismic Zones, SP-53, American Concrete Institute, Detroit, 1977, PP.247-291. 19. Forzani, B., Popov, E. P., and Bertero, V. V., “Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages,” EER Report No. UCB/EERC 79/01, Earthquake Engineering Research Center, University of California, Berkeley, Jan. 1979. 20. 高章育、陳豪吉,”輕質骨材混凝土之耐震性質研究”,國立中興大學土木工程研究所碩士論文,2002。 21. 鄭文信、王櫻茂,”人造輕質骨材混凝土耐久性之研究”,國立成功大學土木工程研究所碩士論文,2001。 22. Zhang, M.H. and Gjorv, O.E., ''Characteristics of Lightweight Aggregates for High Strength Concrete'', ACI Materials Journal, V.88, No.2, 1991, PP. 150-158. 23. Zhang, M.H. and Gjorv, O.E., ''Mechanical Properties of High-Strength Lightweight Concrete'', ACI Materials Journal, V.88, No.3, 1991, PP.240-247. 24. Chang, T.P., C.Y. Lin, C.L. Hwang, Y.F. Wang, "Properties of High-Strength Concrete with Cold-Palletized Lightweight Fly-Ash Aggregate," ACI Conference 1994, pp. 1-14, Singapore. 25. 陳豪吉, ''以台灣地區生產之輕質骨材探討輕質混凝土之配比、製作及強度性質'', 博士論文, 中興大學土木工程系, 1998,. 26. 沈得縣、黃兆龍、林佳柏、呂正宗,「高性能輕質骨材混凝土之配比設計技術與性質量測分析」,第十二屆全國技術及職業教育研討會,工業類V,1997,第349~358頁。 27. ACI Committee 213, ''Guide for structural lightweight aggregate concrete''. 28. ACI Committee 211 Communication, Draft revision of ''Recommended practice for selecting proportions for structural lightweight concrete'', (ACI 613A-59) 29. ACI Committee 211.''Standad Practice for selecting proportions for Structural Lightweight Concrete''(ACI 211.2-81) 30. The Concrete Society, “Assessment of Fire Damaged ConcreteStructures and Repair by Gunite,” Report of a Concrete Society Working Party, London, pp.28, 1978. 31. A. k. Tovey, “Assessment and Repair of Fire Damaged Concrete Structures-an Update,” ACI, Special Publication Sp-92, Evaluation and Repair of Fire Damaged to Concrete, Edited by T. Z. Harmathy, 1986. 32. 吳敏洽,「受熱後混凝土內部之力學性質變化」,國立中興大學,碩士論文(指導教授顏聰),民國76年。 33. 鄭錦銅,「混凝土在高溫下之熱傳及微觀結構變化」,國立中興大學,碩士論文(指導教授顏聰),民國76年。 34. 劉玉雯,「高溫下混凝土之握裹行為」,國立中興大學,碩士論文(指導教授顏聰),民國79年。 35. 高金盛,沈進發,陳舜田,「混凝土火害溫度之綜合評估」,第二屆結構工程研討會論文集(I),49-59頁,南投日月潭,台灣,民國83年。 36. 陳舜田,「火害工程研究」,結構工程,第十一卷,第一期,39-46頁,民國85年。 37. 沈進發,陳舜田,沈得縣,「混凝土結構物火害後現場勘查之程序」,結構工程,第十三卷,第二期,43-59頁,民國87年。 38. 沈得縣,陳舜田,沈進發,「各國火害後混凝土結構物安全評估程序介紹」,建築物火害及災後安全評估法研討會論文集,43-70頁,台北,台灣,民國88年4月16日。 39. 陳舜田,「國內外火害工程研究簡介」,建築物火害及災後安全評估法研討會論文集,31-42頁,台北,台灣,民國88年4月16日。 40. U. Schneider,: Concrete at High Temperatures –A General Review, in Fire Safety Journal, Elsevier, Vo.13, No.1, pp.55-68 (1988). 41. Eurocode 2: Design of concrete structures. prEN 1992-1-2 part 1.2: General rules –Structural fire design, European Committee for Standardization, Brussels (2002). 42. P.K. Metha, “Concrete-Structure, Material and Properties”, Prentice all, Englewood Cliffs, J. J. (1986). 43. S. Mindess & J. f. Young, “Concrete”, Prentice-Hall, Inc. Englewood liffs, New Jersey (1981). 44. Y. Collet, Etude des propriétés du béton soumis a des températures élevées entre 200 net 900°C, Annales des Travaux Publics Beiges, no 4, p 332-338 (1977). 45. EC2, “Eurocode 2: Design of Concrete Structures. ENV 1992-1-2: General Rules –Structural Fire Design”. European Committee for Standardization, Brussels, Belgium (1993). 46. BSI, “Structural Use of Concrete, BS 8110”, British StandardsInstitution, UK (1985). 47. Inwood, M., 1999, “Review of NZS 3101 for high strength and lightweight concrete exposed to fire”, Fire Engineering Research Report 99/10. University of Canterbury, New Zealand. 48. M.S. Abrams, “Compressive Strength of Concrete , atTemperatures to1600°F”, Temperature and Concrete. 49. EC3, “Eurocode 3: Design of Steel Structures. ENV 1993-1-2: General Rules – Structural Fire Design”. European Committee forStandardization, Brussels, Belgium (1995). 50. L.T. Phan and N.J. Carino, “Code Provisions for High Strength Concrete Strength-Temperature Relationship at Elevated Temperatures”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 51. A. Bilodeau, V.K.R. Kodur, and G.C. Hoff, “Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire”, Cement & Concrete Composites, Vol. 26, pp. 163-174, 2004. 52. T.A. Hammer, “Compressive Strength and E-modulus at Elevated Temperatures”, Report 6.1, High Strength Concrete phase 3, SINTEF-report no STF70 A95023, Trondheim, pp. 16, 1995. 53. T.T. Lie and D.E. Allen, Calculation of the fire resistance of reinforced concrete columns, Division of Building Research, National Research Council of Canada, Technical Paper No. 378, Ottawa, NRCC 12797, 25 p. (1972). 54. Design of Concrete Structures for Buildings, 1984. Canadian Standards Association, CSA Standard CAN3-A23.3, Rexdale, Ontario, 281 p. 26. C. Castillo and AJ. Durrani, “Effect of transient high temperature on high-strength concrete,” ACI Mater J., 87(1), pp.47-53(1990). 55. G. Sanjayan and LJ Stocks, “Spalling of high-strength silica fume concrete in fire,” ACI Mater J., 90(2), pp. 170-173(1993). 56. S.Y.N. Chan, X. Luob, and W. Sunb, “Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete,”Construction and Building Materials, No. (14), pp. 261-266(2000). 57. L.T. Phan, “Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art,” NISTIR 5934, Building and Fire Research Lab``oratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, December 1996). 58. L.T. Phan and N.J. Carino, “Review of mechanical properties of HSC at elevated temperature,” Journal of Materials in Civil Engineering, American Society of Civil Engineers, v.10 (1) (February, 1998) 58-64. 59. L.T. Phan and N.J. Carino, “Mechanical Properties of High Strength Concrete at Elevated Temperatures”, NISTIR 6726, Building and Fire Research Laboratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, March 2001). 60. U. Schneider, “Concrete at high temperatures-A general review”, Fire Safety Journal, The Netherlands (1988) 55-68. 61. U. Schneider, “Behavior of concrete at high temperatures”, RILEM-Committee 44-PHT(February, 1983). 62. U. Schneider, “Properties of materials at high temperatures-Concrete”, RILEM-Committee 44-PHT Department of Civil Engineering, University of Kassel (Kassel, June, 1985). 63. L.T. Phan and N.J. Carino, “Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures”, ACI Materials Journal, American Concrete Institute, v. 99 (1) (January-February, 2002) 54-66. 64. Y. Anderberg, Spalling phenomena of HPC and OC. Proc., In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 69-73(1997). 65.Z.P. Bant, Analysis of pore pressure: thermal stresses and fracture in rapidly heated concrete, Proc, In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 155-164(1997). 66. L.T. Phan and N.J. Carino, “Fire Performance of High Strength Concrete Strength: Research Needs”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 67. T.A. Holm, “lightweight concrete and aggregates,”Standard Technical Publication 196C(1994). 68. T.A. Hammer, “Marine Concrete Structures Exposed to Hydracarbon Fires –Spalling Resistance of LWA Concrete”, SINTEF-report no STF65 A88064, Trondheim, pp. 8, 1990. 69. G. Fabritz, “Method for the Manufacture of Lightweight Fire-resistant Concrete”, Tysk patent DE 3704014 A1, pp. 2, 1987 (in German). 70. J.J. Jensen, T.A. Hammer, E. Opheim, and P. A. Hansen, “Fire Resistance of Lightweight Aggregate Concrete”, Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, pp. 192-203, 1995. 71. P.A. Hansen, and J.J. Jensen, “Fire Resistance and Spalling Behavior of LWA Beams”, Report 6.3, High Strength Concrete phase 3, SINTEF-report no STF70 A95004, Trondheim, pp. 13, 1995. 72. FIP Manual of Lightweight Aggregate Concrete, Second Edition, Surrey University Press, London, 1983H. L. Malhotra, “Spalling of Concrete in Fires”, CIRIA technical note 118, pp. 34, London, 1984. 73. 葉瑞德、邱耀正,”高型R.C.剪力牆-構架互制實驗研究”國立成功大學土木工程研究所碩士論文,2002。 74. 余明松、邱耀正,” 低型R.C.剪力牆-構架互制實驗研究”國立成功大學土木工程研究所碩士論文,2002。
摘要: 本研究主要探討市面上之預鑄牆接頭鐵件用於輕質骨材混凝土試體經高溫火害後之力學行為,並與鋼筋常重混凝土試體進行比較。在實際用途中,乾式(61)調整接頭及濕式(81)調整接頭只承受拉力,而(56E)承重接頭必須承受拉力與剪力,因此本研究對上述三種接頭進行抗拉試驗,但只對(56E)承重接頭進行抗剪試驗。 試驗結果顯示,上述三種接頭在輕質骨材混凝土試體與在常重試體中遭受火害後之力學行為相當一致,例如由荷重-變位圖形可以看出,抗拉試驗中兩類試體(輕質及常重試體)都顯示具有開裂及極限荷重之兩階段模式;抗剪試驗中兩類試體都顯示一旦開裂即瞬間破壞現象。另外,在破壞荷重及耐久性方面,各種試驗結果都顯示,預鑄牆接頭在輕質試體中比在常重試體中有更佳之耐火性能。
The main purpose of the report is to study the mechanical behavior of the connections for precast walls made of reinforced lightweight aggregate concrete (RLAC) and reinforced normalweight aggregate concrete (RNAC) after fire-resistance tests. Three types of connections, dry type of (61), wet type of (81) and bearing type of (56E), were selected for tests. Tension tests were performed for all three types of connections. But, shearing test was performed only for the connection of bearing type of (56E). The test results show that the mechanical behavior of all selected types of connections after fire-resistance tests are almost the same. For example, in the load-displacement diagrams of tension tests, both types of specimens (lightweight and normalweight specimens) have two particular points, cracking load and ultimate load, can be read. But, only one point, ultimate load, can be read in shearing test. In the shearing tests, all of specimens failed once the cracks occur. Besides, in the ultimate loads and ductilities, tests show that the connections with lightweight concrete perform better than they with normalweight concrete.
URI: http://hdl.handle.net/11455/16128
其他識別: U0005-2907200917183000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200917183000
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.