Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16163
標題: 三維度土壤邊坡滑動機制之探討
A Study on the Sliding Mechanism of Three-Dimensional Soil Slope
作者: 蔡雅芳
Cai, Ya-Fang
關鍵字: Three-Dimensional Soil Slope
三維度邊坡
Sliding Mechanism
滑動機制
出版社: 土木工程學系所
引用: 參考文獻 1. 范嘉程、馮道偉,2003,「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,第61-74頁。 2. 張元良,2004,「以剪力強度折減法進行邊坡穩定分析之研究」,博士論文,國立中興大學土木工程研究所,台中。 3. 陳政宏,2008,「土壤邊坡之力學行為受不同形成方式之影響」,碩士論文,國立中興大學土木工程研究所。 4. 黃添坤,2000,「有限元素法於邊坡穩定分析之應用」,中國土木水利工程學刊,第十二卷,第四期,第695-702頁。 5. 鄭富書,1995,「有限元素法邊坡分析之安全係數研訂」,財團法人中興工程顧問社。 6. 鄭富書、黃國品,1998,「有限元素分析應用於大地問題之安全性衡量」,中國土木水利工程學刊,第十卷,第二期,第279-298頁。 7. 潘如蕙,2007,「剪力強度折減法應用於層狀土壤邊坡之穩定性研究」,碩士論文,國立成功大學資源工程學系。 8. Albataineh N., 2006, “Slope stability analysis using 2D and 3D methods,” Degree Master of Science, Graduate Faculty of The University of Akron. 9. Baker, R., 1980, “Determination of the critical slip surface in slope stability computation,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 4, pp. 333-359. 10. Bandini, P. and Salgado, R., 1999, “PCSTABL6 for DOS,”User Manual, Version 6.0, Purdue University. 11. Brinkgreve, R. B. J., and Bakker, H. L., 1991, “Nonlinear finite element analysis of safety factors,” Computer Methods and Advances in Geomechanics, pp. 1117-1122. 12. Brown, C. B. and King, I. P., 1966, “Automatic embankment analysis : equilibrium and instability conditions,” Geotechnique, Vol. 16, No. 3, pp.209-219. 13. Chen, W. F. and Saleeb, A. F., 1982, Constitutive Equations for Engineering Materials, Volume 1 : Elasticity and Modeling, New York, John Wiley and Sons. 14. Chen, Z., Wang, X., Haberfield, C., Yin, J.,Wang, Y., 2001, “A three-dimensional slope stability analysis method using the upper bound theorem, Part I: theory and methods,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 369-378. 15. Chugh, A. K., 2003, “On the boundary conditions in slope stability analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, pp. 905-926. 16. Clough, R.W., and Woodward, R. J., 1967, “Analysis of embankment stress and deformations,” J. Soil Mech. and Found. Div., and ASCE, 93(4), pp.529-549. 17. Cormeau, I., 1975, “Numerical stability in quasistatic elasto-visco-plastic,” Int. J. Num. Meth. Engng, Vol. 9, pp. 109-127. 18. Dawson, E. M., Roth, W. H. and Drescher, A., 1999, “Slope Stability Analysis by Strength Reduction,” Geotechnique, London, U.K., Vol. 49, No. 6, pp. 835-840. 19. Donald, I. B., and Giam, S. K., 1988, “Application of the nodal displacement method to slope stability analysis,” Proceedings of the Fifth Australia-New Zealand Conference on Geomechanics, Sydney, Australia, pp. 456-460. 20. Duncan, J. M. and Chang, C. Y., 1970, “Nonlinear analysis of stress and strain in soil,” J. Soil Mech. and Found. Div., ASCE, Vol. 96, No. 5, pp. 1629-1653. 21. Duncan, J. M., and Dunlop, P. , 1969, “Slopes in stiff-fissured clay and shales,” Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 95, No. 2, pp. 467-492. 22. Duncan, J. M., 1996,“State of the Art:Limit equilibrium and finite element analysis of slopes,” Journal of Geotechnical Engineering, Vol.122, No.7, pp.577-596. 23. Dunlop, P., and Duncan, J. M., 1970, “Development of failure around excavated slopes,” Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 96, No. 2, pp. 471-493. 24. Fredlund, D. G. and Krahn, J., 1977, “Comparison of slope stability methods of analysis,” Canadian Geotechnical Journal, Vol. 14, No. 3, pp. 429-439. 25. Griffiths, D. V., 1982, “Computation of bearing capacity factors using finite elements,” Geotechnique, Vol. 32, pp. 195-202. 26. Griffiths, D. V., and Lane, P. A., 1999, “Slope stability analysis by finite elements,” Geotechnique, London, U.K., Vol. 49, No. 3, pp. 387-403. 27. Huang, S.L., and K. Yamasaki, 1993, “Slope failure analysis using local minimum factor-of-safety approach,” Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 12, pp. 1974-1987. 28. Manzari, M. T. and Nour, M. A., 2000, “Significance of soil dilatancy in slope stability analysis,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 1, pp. 75-80. 29. Matsui, T. and San, K. C., 1992, “Finite element slope stability analysis by shear strength reduction technique,” Soils and Foundations, Vol. 32, No. 1, pp. 59-70. 30. Perzyna, P., 1966, “Fundamental problems in viscoplasticity,” Advances in Applied Mechanics, Vol. 9, pp. 243-377. 31. Sarma, S. K., 1974, “Stability analysis of embankments and alopes,” J. Geotech. Engrg. Div., ASCE, Vol. 105, No. 12, pp. 1511-1524. 32. Smith, I. M. and Griffiths, D. V., 1988, Programming the Finite Element Method, 2nd edition, Wiley, Chichester, U. K. 33. Smith, I. M. and Griffiths, D. V., 1998, Programming the Finite Element Method, 3rd edition, New York, John Wiley and Sons. 34. Ugai, K., 1989, “A method of calculation of total factor of safety of slopes by elaso-plastic FEM,” Soils and Foundations, Vol. 29, No. 2, pp. 190-195. 35. Ugai, K. and Leshchinsky, D., 1995, “Three-dimensional limit equilibrium and finite element analysis : A Comparison of Results,” Soils and Foundations , Vol. 35, No. 4, pp. 1-7. 36. Wright, S. G., Kulhawy, F. H., and Duncan, J. M., 1973, “Accuracy of equilibrium slope stability analysis,” Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 99, No. 10, pp. 783-791. 37. Zhang, X., 1988, “Three-dimensional stability analysis of concave slopes in plan view,” ASCE, Jouornal of Geotechnical Engineering, Vol. 114, pp. 658-671. 38. Zienkiewicz, O. C., 1975, “Associated and non-associated visco-plasticity and plasticity in soil mechanics,” Geotechnique, London, U. K., Vol. 25, No. 4, pp. 671-689. 39. Zienkiewicz, O. C., 1971, The Finite Element Method in Engineering Science, McGraw-Hill, New York. 40. Zou, J. Z., Williams, D. J., and Xiong, W. L. (1995). “Search for critical slip surfaces based on finite element method,” Canadian Geotechnical Journal, Vol. 32, pp. 233-246.
摘要: 邊坡為地表與水平面不平行具有一傾斜角度者,由於地表不是水平,故重力分量將使土壤向下移動,且當此重力分量足夠大,或是土壤強度無法負荷時,邊坡將會發生破壞行為,在工程實務上工程師們希望能以計算的方式求取邊坡安全性。在傳統上考慮剪應力與土壤之剪力強度是最常被使用的方式,將邊坡透過力學的分析考慮在各種因素的影響下,求所能具有足夠的工程穩定性與經濟性之邊坡,此過程稱為邊坡穩定分析。 在邊坡穩定分析中三維度的考量已有許多學者提出研究,且其安全係數也有一定的可靠度,故本研究不針對安全係數進行探討。本研究是利用數值分析方法,採用張元良(2004)所撰寫之程式加以修改,探討土壤邊坡之滑動機制,以藉此更加瞭解邊坡的行為。 研究結果顯示(1)三維度邊坡於遠端完全束制下,接近邊坡中央部份之滑動方向幾乎平行於中央對稱軸,而鄰近束制端部分,頂部滑動方向偏向中央對稱軸,接近底部則反而偏向束制端滑動。(2)三維度邊坡於近地面層存在有軟弱土層時,於接近趾部之滑動量相當明顯,且有隆起之情況發生。(3)三維度均勻邊坡含軟弱土層時,於接近趾部之滑動情形只在軟弱土層接近地面之邊坡較為明顯,且僅有些微往坡面外圍滑動之趨勢。
URI: http://hdl.handle.net/11455/16163
其他識別: U0005-0208201018002300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201018002300
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.