請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/16261
標題: Buckling Stress of Thin Cylindrical Shells Under Axial Compression by Finite Element Method
軸壓作用下薄殼圓柱挫屈應力之有限元素法分析
作者: 鍾蔿
Chung, Wei
關鍵字: finite element
有限元素
buckling
thin cylindrical shell
挫屈
薄殼圓柱
出版社: 土木工程學系所
引用: [1] von KaÂrma n, T., Dunn, L.G., Tsien, H., 1940. The in¯uence of curvature on the buckling characteristics of structures. Journal of the Aeronautical Sciences 7, 276~289. [2] von KaÂrma n, T., Tsien, H., 1941. The buckling of thin cylindrical shells under axial compression. Journal of the Aeronautical Sciences 8, 303~312. [3] Koiter, W.T., 1945. On the stability of elastic equilibrium (in Dutch with English summary). Ph.D. thesis, Delft, H J Paris. [4] Arbocz, J., Babcock, C.D., 1969. The effect of general imperfections on the buckling of cylindrical shells. Journal of Applied Mechanics, Trans. ASME 36, 28~38. [5] Arbocz, J., 1974. The effect of initial imperfections on shell stability. In: Fung, Y.C., Sechler, E.E. (Eds.), Thin Shell Structures.Prentice-Hall, Englewood Cliffs, N.J, pp. 205~245. [6] Calladine, C.R, 1983. Theoryof shell structures. Cambridge: Cambridge UniversityPress. [7] Arbocz, J., Hol, J.M.A.M., 1991. Collapse of axially compressed cylindrical shells with random imperfections. AIAA Journal 29,2247~2256. [8] Mandal, P., 1997. Buckling of thin cylindrical shells under axial compression. Ph.D. thesis, University of Cambridge, Department of Engineering. [9] Lancaster, E.R., Calladine, C.R., Palmer, S.C., 1998. Experimental observations on the buckling of a thin cylindrical shell subjected to axial compression. International Journal of Mechanical Sciences, in press. [10] Mandal, P., Calladine, C.R., 2000. Buckling of thin cylindrical shells under axial compression. International Journal of Solids and Structures;37:4509–25. [11] Mandal, P., Calladine, C.R.,祝恩淳, 2001.軸壓圓柱薄殼的挫屈分析. China Civil Engineering Journal,Vol 34 , No 3, 1000-131X 03-0018-05. [12] Cook, R., D., Malkus, D., S., Plesha, M., E., 1989. Concepts and applications of finite element (3nd Edn). John wiley&sons, New York. [13] Timoshenko, S.P., Gere, J.M., 1961. Theory of elastic stability (2nd Edn). McGraw-Hill, New York. [14] Reismann, H.,Pawlik, P., S., 1980. Elasticity Theory and Applications. John wiley&sons. New York. [15] Axelrad, E., L., 1987.Theory of Flexible Shells. Noryh-Holland-Amsterdam. New York. Oxford. Tokyo. [16] 謝元裕,1982,”結構穩定學”,文笙書局。
摘要: The main purpose of this paper is to explore the buckling deformation patterns and the buckling stress of the thin cylindrical shell subject to axial force. Using three-dimensional elastic stability variational principle derived three-dimensional finite element model of elastic stability analysis. The analysis results of buckling deformation and stress is considered four different boundary conditions, differ length L, radius R and the thickness t of cylindrical shell. The regression formula of buckling stress is established by considering multiple parameter of analysis results.The finite element analysis results in present paper compare with the classical theory value and can be found previous studies with differences and discrete between experimental data and classical theory value, Classical theory could be errors or using constraints. In the previous experiment, the boundary constraints of thin cylindrical shells more difficult, therefore to create large discreteness of comparsion results between practical and theoretical.
本論文的主要目的在於探討薄殼圓柱受到軸向力作用之挫曲變形型態及挫屈應力,利用三維彈性穩定變分式推導彈性穩定三維有限元素的分析模式,在其中四種不同邊界條件下的多組不同長度L、半徑R及厚度t的臨界荷重之變化,並歸納出其完整地挫屈變形型態及計算挫屈應力的迴歸公式。由本文所建立的有限元素分析結果經由與經典理論值比較後,可以發現與以往研究當中實驗值與經典理論值的差異性及離散性一致,可以說明經典理論值之結果有可能存在錯誤或使用上的限制,因此使得其差異性較大,而在以往實驗中薄殼圓柱之邊界束制較不容易,因此造成實際與理論的結果比對離散性較大。
URI: http://hdl.handle.net/11455/16261
其他識別: U0005-2008201016200100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201016200100
顯示於類別:土木工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。