請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/16307
標題: Validity and Modeling for the Displacement Dependent Semi-Active Hydraulic Damper
半主動位移相依阻尼器之有效性與分析模型
作者: 隋忠寰
Sui, Chung-Huan
關鍵字: 半主動
semi-active
阻尼器
振動控制
damper
structural control
出版社: 土木工程學系所
引用: Ando, N., Takahashi, S., and Yoshida, K., 1993, "Behavior of unbonded braces restrained by reinforced concrete and FRP," Composite Construction in Steel and Concrete II, ASCE, New York, 869-882 Chopra, A. K., 2001, Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, New Jersey. Clough, R. W., Penzien, J., 1993, Dynamics of Structures, McGraw-Hill, Singapore. Constantinou, M.C., Soong, T.T., Dargush, G.F., 1996, “Passive Energy Dissipation Systems for Structural Design and Retrofit,” Monograph of the National Center for Earthquake Engineering Research, Buffalo, New York. Den Hartog, J.P., 1931, "Forced vibrations with combined Coulomb and viscous friction," Transactions of the American Society of Mechanical Engineers 53, pp. 107-115 Dyke, S. J., Spencer Jr., B. F., Sain, M. K., and Carlson, J. D., 1998, "An experimental study of MR dampers for seismic protection," Smart Materials and Structures 7, 693-703. Hall, J. F., 2006, "Problems encountered from the use (or misuse) of Rayleigh damping," Earthquake Engineering and Structural Dynamics 35, 525-545. Housner, G. W., Bergman, L. A., Caughey, T. K., 1997, Structural control: past present and future. Journal of Engineering Mechanics 123(9), 897-971. Ian, A., 1996, “Passive Energy Dissipation-Hardware and Application,” Proceedings, Los Angeles County and Seaosc Symposium on Passive Energy Dissipation Systems for New and Exist Buildings, LA, July (1996) Inaudi, J. A., Leitmann, G., Kelly, J. M., 1994, "Single-Degree-Freedom Nonlinear Homogeneous Systems," Journal of Engineering Mechanics 120(7), 1543-1562. Kobori, T., Takahashi, M., Nasu, T., Niwa, N., Ogasawara, K., 1993, "Seismic response controlled structure with active variable stiffness system," International Journal on Earthquake Engineering and Structural Dynamics 22(9), 925-941. Meirovitch, L., 1990, Dynamics and control of structures, John Wiley & Sons, New York. Narito, K., Takuji, K., Motoichi, T., Naoki, N., Hiroshi, M., 1999, "Actual seismic response controlled building with semi-active damper system," Earthquake Engineering and Structural Dynamics 28(11), 1427-1447. Narito, K., Takuji, K., Motoichi, T., Toshihisa, I., Naoki, N., Jun, T., Hiroshi, M., 2000, "Forced vibration test of a building with semi-active damper system," Earthquake Engineering and Structural Dynamics 29(5), 629-645. Nasu, T., Kobori, T., Takahashi, M., Niwa, N., Ogasawara, K., 2001, "Active variable stiffness system with non-resonant control," Earthquake Engineering and Structural Dynamics 30(11), 1597-1614. Occhiuzz, A., Spizzuoco, M., Serino, G., 2003, "Experimental analysis of magnetorheological dampers for structural control," Smart Materials and Structures 12, 703-711. Occhiuzz, A., Spizzuoco, M., 2005, "Experimental analysis of a semi-actively controlled steel building," Structural Engineering and Mechanics 19(6), 721-747. Pall, A. S., Marsh, C., 1982, "Response of Friction Damped Braced Frames", Journal of the Structural Division, American Society of Civil Engineers, Vol. 108, No. ST6 Pall, A. S., 1984, "Response of Friction Damped Buildings", Proceeding of the Eighth World Conference on Earthquake Engneering, San Francisco, Vol. V Shih, M. H., Sung, W. P., Go, C. G., 2003, "A design concept with a displacement dependent semi-active hydraulic damper energy dissipation," Experimental Techniques 27(6), 53-56. Shih, M. H., Sung, W. P., 2004, "The energy dissipation behavior of displacement dependent semi-active hydraulic damper," Journal of Structural Mechanics and Earthquake Engineering 21(2), 121-129. Soong, T.T., Dargush, G.F., 1996, Passive Energy Dissipation Systems in Structural Engineering, Wiley and Sons, London Taylor, D. P., 1996, “Fluid Dampers for Applications of Seismic Energy Dissipation and Seismic Isolation”, Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June 23-28, No. 798. Towashiraporn, P., Park, J., Goodno, B.J., Craig, J.I., 2002, “Passive control methods for seismic response modification,” Progress in Structural Engineering and Materials, 4(1), 74 - 86 Uniform Building Code, 1997, Structural Engineering Design Provisions, Volume 2, International Conference of Building Officials, Whittier, California, USA. Xu, Y. L., Qu, W. L., Ko, J. M., 2000, "Seismic Response Control of Frame Structures Using Magnetorheological / Electrorheological Dampers," Earthquake Engineering and Structural Dynamics 29(5), 557-575. Yao, J. T. P., 1972, "Concept of structural control," Journal of the Structural Division 98(7), 1567-1574. Yaomin, F., and Sheldon, C., 2000, “Design of friction damped structures using lateral force procedure,” EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, 29: 989-1010
摘要: In the structural engineering, the damping device is the most consideration to equip the structure for resisting earthquake. A hydraulic damper is a kind of energy-dissipating device to reduce the structural response in earthquake engineering. Newly developed Displacement Dependent Semi-Active Hydraulic Damper (DSHD) is one of hydraulic dampers. The DSHD is a fixture connecting the brace and the structure. For this damper, the hydraulic cylinder is acting as a damper connector. This damper connector, which links a resistance component with a structure, is like a flexible switch with tight-loose and close-open functions. At a seismic loading, the DSHD is functioned to dissipate the energy at the transition of bracing from the tensile constraint to compressive constraint or in reverse. When a structure suffers a large seismic excitation, the overflow function is triggered to prevent the failure of bracing member. That is, at the stress in the linked brace reaching a certain value, it will start the opening of the overflow valve maintaining an aptotic pressure for confining the bracing deformation within the design value. This DSHD provides availability for resisting excessive vibration in the structural design. In this paper, the analysis modeling is set up for simulating the nonlinear behavior of DSHD. The performance of DSHD is investigated in the nonlinear analysis for seismic evaluation. For a DSHD-added structure, to linearize the nonlinear behavior of DSHD is required for structural design. Using damping ratio as a parameter, the DSHD is modeled as a fixture of linear spring and linear viscous damper. This approach is valid for the application in the engineering practice.
在結構振動控制的領域,於結構物上安裝能量消散器為目前提升結構耐震能力的策略之一。藉由能量消散器所提供之遲滯廻圈以吸收地震力輸入結構的能量,使結構物不產生破壞。本研究針對半主動位移相依阻尼器( Displacement Semi-active Hydraulic Damper, DSHD )建立該元件之非線性模型與等值線性模型,並探討該元件於建築結構上之設計流程,進而討論其與摩擦型阻尼器之比較。 本文探討主題大至可分為緒論、半主動位移相依阻尼器DSHD之元件與消能行為、DSHD應用於結構之有效性、DSHD等值線性化之分析、DSHD與摩擦型阻尼器之比較、結論共六個章節。本研究中探討目前常見之半主動阻尼器其阻尼機制並與半主動位移相依阻尼器之不同。由於DSHD主要是由油壓缸與方向控制閥組成,藉由油路之變換改變其對結構物作用力,本文利用等值阻尼比的概念,探討DSHD的參數設計與其適用性,討論中包括DSHD時間延遲量對其消能效益的影響。經由數值分析探討,可以發現DSHD在結構週期與地盤主控週期相接近時其消能效益為最佳,並由分析中可知DSHD能夠降低高模態的貢獻量,對位移反應有良好的控制效果。由於DSHD的消能效應取決加勁元件的勁度與溢流力的設定,在高勁度與高強度的加勁元件下,DSHD所提供的阻尼力有良好的調適性。由於DSHD所提供的阻尼力隨振振增加而產生調適性,經由其與摩擦型阻尼的比較後,可知DSHD的消能效應優於摩擦型阻尼器,並在結構與地盤共振的情況下,安裝DSHD之結構位移反應呈現收斂的行為。
URI: http://hdl.handle.net/11455/16307
其他識別: U0005-2506201014361900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2506201014361900
顯示於類別:土木工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。