Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16438
標題: 輕質混凝土圬工單元工程性質與製造技術之研究
Research on the engineering properties and manufacturing of Lightweight concrete masonry units
作者: 范國晃
關鍵字: 圬工單元
masonry units
輕質骨材
面層
阻熱性
light aggregate
coating
fire insulation
出版社: 土木工程學系所
引用: 1. 顏聰,「輕質混凝土之工學性質及工程特性」,混凝土工程技術研習會,台灣營建研究院,1985。 2. 顏聰,「國內輕質骨材之燒製與輕質混凝土之拌製可行性研究」,第六屆建築成果論文集, pp.29-47,1993。 3. J.J. Shideler, “Lightweight Aggregate Concrete for Structural Use”, ACI Journal, October 1957. 4. J.A. Hason, “Guide for Structural Lightweight Aggregate Concrete”, 213, ACI Journal. 5. 高章育,「輕質骨材混凝土之耐震性質研究」,國立中興大學碩士論文,2002。 6. C.C. Yang, R. Huang, “A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research, Vol. 26, No.10, pp.1567 - 77,(1996). 7. J.M. Chi, R. Huang, C.C. Yang, J.J.Chang, “Effect of Aggregate Properties on the Strength and Stiffness of Lighetweight Concrete”, Cement & Concrete Composites ,Vol. 25, pp.197-205, 2003. 8. 陳豪吉,「以台灣地區生產輕質骨材探討輕質混凝土之配比製作及強度性質」,國立中興大學土木工程系博士論文,1998。 9. U. Schneider, “Concrete at High Temperatures –A General Review”, in Fire Safety Journal, Elsevier, Vo.13, No.1, pp.55-68 (1988). 10. EC2, “Design of concrete structures”. PrEN 1992-1-2 part 1.2: General Rules –Structural fire design, European Committee for Standardization, Brussels (2002). 11. P.K. Metha, “Concrete-Structure, Material and Properties”, Prentice all, Englewood Cliffs, J. J. (1986). 12. S. Mindess, J.f. Young, “Concrete”, Prentice-Hall, Inc. Englewood liffs, New Jersey (1981). 13. Y. Collet, “Etude des propriétés du béton soumis a des températures élevées entre 200 net 900°C”, Annales des Travaux Publics Beiges, no 4, pp 332-338 (1977). 14. EC2, “Eurocode 2: Design of Concrete Structures. ENV 1992-1-2: General Rules –Structural Fire Design”. European Committee for Standardization, Brussels, Belgium (1993). 15. BSI, “Structural Use of Concrete, BS 8110”, British Standards Institution, UK (1985). 16. M. Inwood, “Review of NZS 3101 for high strength and lightweight concrete exposed to fire”, Fire Engineering Research Report 99/10. University of Canterbury, New Zealand (1999). 17. M.S. Abrams, “Compressive Strength of Concrete , atTemperatures to1600°F”, Temperature and Concrete. 18. EC3, “Eurocode 3: Design of Steel Structures. ENV 1993-1-2: General Rules – Structural Fire Design”. European Committee forStandardization, Brussels, Belgium (1995). 19. L.T. Phan, N.J. Carino, “Code Provisions for High Strength Concrete Strength-Temperature Relationship at Elevated Temperatures”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 20. A. Bilodeau, V.K.R. Kodur, and G.C. Hoff, “Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire”, Cement & Concrete Composites, Vol. 26, pp. 163-174, (2004). 21. T.A. Hammer, “Compressive Strength and E-modulus at Elevated Temperatures”, Report 6.1, High Strength Concrete phase 3, SINTEF-report no STF70 A95023, Trondheim, pp. 16, (1995). 22. T.T. Lie, D.E.Allen, “Calculation of the fire resistance of reinforced concrete columns”, Division of Building Research, National Research Council of Canada, Technical Paper No. 378, Ottawa, NRCC 12797, 25 p. (1972). 23. C. Castillo, A.J. Durrani, “Effect of transient high temperature on high-strength concrete,” ACI Mater J., 87(1), pp.47-53(1990). 24. G. Sanjayan, L.J. Stocks, “Spalling of high-strength silica fume concrete in fire,” ACI Mater J., 90(2), pp. 170-173(1993). 25. S.Y.N. Chan, X. Luob, and W. Sunb, “Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete,”Construction and Building Materials, No. (14), pp. 261-266(2000). 26. L.T. Phan, “Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art,” NISTIR 5934, Building and Fire Research Laboratory,National Institute of Standards and Technology, (Gaithersburg, Maryland, December 1996). 27. L.T. Phan, N.J. Carino, “Review of mechanical properties of HSC at elevated temperature,” Journal of Materials in Civil Engineering, American Society of Civil Engineers, v.10 (1), pp.58-64.(February, 1998) 28. L.T. Phan, N.J. Carino, “Mechanical Properties of High Strength Concrete at Elevated Temperatures”, NISTIR 6726, Building and Fire Research Laboratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, March 2001). 29. U. Schneider, “Concrete at high temperatures-A general review”, Fire Safety Journal, The Netherlands, pp.55-68(1988). 30. U. Schneider, “Behavior of concrete at high temperatures”, RILEM-Committee 44-PHT (February, 1983). 31. U. Schneider, “Properties of materials at high temperatures concrete”, RILEM-Committee 44-PHT Department of Civil Engineering, University of Kassel (Kassel, June, 1985). 32. L.T. Phan and N.J. Carino, “Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures”, ACI Materials Journal, American Concrete Institute, v. 99 (1), pp 54-66 (January-February, 2002). 33. Y. Anderberg, “In Workshop on Fire Performance of High-Strength Concrete“, NIST Spec. Publ. 919, L.T. Phan, N.J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., pp.69-73(1997). 34. Z.P. Bant, “In Workshop on Fire Performance of High-Strength Concrete”, NIST Spec. Publ. 919, L.T. Phan, N.J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., pp.155-164(1997). 35. L.T. Phan and N.J. Carino, “Fire Performance of High Strength Concrete Strength: Research Needs”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 36. T.A. Holm, “lightweight concrete and aggregates,” Standard Technical Publication 196C (1994). 37. T.A. Hammer, “Marine Concrete Structures Exposed to Hydracarbon Fires –Spalling Resistance of LWA Concrete”, SINTEF-report no STF65 A88064, Trondheim, pp. 8(1990). 38. G. Fabritz, “Method for the Manufacture of Lightweight Fire-resistant Concrete”, Tysk patent DE 3704014 A1, pp. 2(1987) . 39. J.J. Jensen, T.A. Hammer, E. Opheim, P.A. Hansen, “Fire Resistance of Lightweight Aggregate Concrete”, Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, pp.192-203(1995). 40. P.A. Hansen, J.J. Jensen, “Fire Resistance and Spalling Behavior of LWA Beams”, Report 6.3, High Strength Concrete phase 3, SINTEF-report no STF70 A95004, Trondheim, pp.13 (1995). 41. H. L. Malhotra, “Spalling of Concrete in Fires”, FIP Manual of Lightweight Aggregate Concrete, Second Edition, Surrey University Press, London, CIRIA technical note 118, pp.34 (1984). 42. 吳秋濃,「飛灰取代部分水泥對流動性混凝土質流性質與工作性之影響」,國立中興大學碩士論文,2000。 43. 顏聰,「飛灰混凝土之工程性質」,正確使用飛灰以提昇混凝土品質論文集,民國85年。 44. 陳俊欽,「爐石取代部分水泥對流動性混凝土質流性質與工作性之影響」,國立中興大學碩士論文,2002。 45. 王和源,黃兆龍,林草英,「水灰比對含爐石水泥漿之性質極強度發展的影響」,土木水利雜誌第十三卷第一期,民國75年。 46. 土木水利第29卷第三期pp.97。 47. 湯兆緯、陳冠宏、張朝順編譯,『土木材料』,高立圖書公司,民國91年9月出版。 48. TEK 18-1A, “Compressive strength evaluation of concrete masonry”, National Concrete Masonry Association (2004). 49. TEK 18-6, “Structural Testing of Concrete Masonry Assemblages”, National Concrete Masonry Association (1997). 50. ASTM E72-95, “Standard Test Method for Conducting Strength Tests of Panels for Building Construction”, American Society for Testing and Materials (1995). 51. ASTM E695, “Standard Test Method for Measuring Relative Resistance of Wall, Floor, and Roof Construction to Impact Loading”, American Society for Testing and Materials. 52. 陳人豪,台灣地區水泥業二氧化碳排放變動效果因素分析-投入產出結構分析法之應用,嘉南藥理科技大學碩士論文,2008。 53. 楊錦懷、黃兆龍,「高性能混凝土預鑄構件自動化產製技術 」,內政部建築研究所成果報告,民國85年。 54. 楊錦懷、呂守陞,「混凝土預鑄構件之應用及開發 」,內政部建築研究所成果報告,民國83年。 55. 鄭勝二,「以低壓灌漿工法預鑄輕質混凝土磚之可行性研究」,國立中興大學碩士論文,2003。 56. 王文清,「高壓及擠壓成型預鑄組構件工業化產製評量及品管策略之研究」,台灣科技大學碩士論文,1989。 57. 李慶龍,「隧道施工湧水處理技術-灌漿工法」,台電,2002。 58. 葉祥海,李文勳,倪至寬,「既有建物液化地盤改良之研究」,內政部建築研究所,MOIS 902021,民國90年。 59. C.C. Carlson, “Lightweight aggregates for concrete masonry units,” Journal of the American Concrete Institute 5(28), pp. 491-508(1956).
摘要: This study aimed to discuss the manufacture technology and engineering nature of lightweight aggregate concrete and have fire insulation property research of lightweight aggregate concrete. The research was plan for three parts: First, with low-pressure grouting method, adjust the ratio of the composition of different paste materials for precasting lightweight masonry hollow bricks. The less than 1000 kg/m3 unit weight aggregate is used in the research with different water-glue ratio and different cement replacement ratio of pozzolanic materials to discuss the unit weight, compressive strength, and other constructional nature changes of light-weight masonry hollow brick. Second, replace part of cement by slag powder with appropriate ratio to have manufacture technology research of high-performance concrete masonry brick and inspect unit weight, compressive strength, water absorption, moisture containing ratio of maximum water absorption, thermal conductivity coefficient, heat resistance, flame resistance and other features of masonry bricks based on the regulation. The last is to increase different thickness and material of the surface material on the product surface and test its waterproof properties.Third, launch the research of fire insulation properties for lightweight masonry components which contains the basic heat insulation properties of lightweight aggregate concrete and fire resistance test of light-weight masonry component. On the other hand, filling a normal weight concrete specimen with the same strength for comparison analysis. The test result of masonry hollow brick production technology and engineering properties show that the specimen produced by the test engineering methods can effectively reduce the physical unit weight to below 800 kg/m3 which is one-third of the general normal weight concrete. The compressive strength range is approximately between 7 MPa to 11 MPa which can also meet the basic strength requirements of non-structural hollow bricks. The test result of high-performance lightweight aggregate concrete masonry brick showed that unit weight of masonry brick is between 1,530 kg/m3 ~ 1,620 kg/m3. Compressive strength is between 193kgf/cm2 ~ 287kgf/cm2 (parallel to the force direction) and 241kgf/cm2 ~ 419kgf/cm2 (vertical force direction). Water absorption is between 0.09 g/cm3 ~ 0.12 g/cm3 and the maximum water absorption of the moisture contenting ratio is between 53% to 59%. The thermal conductivity coefficient is between 0.29 kcal/m.℃.hr ~ 0.36 kcal/m.℃.hr and heat resistance is between the qualifying time of 125 minutes ~ 208 minutes. The fire resistance time is 2 and 3 hours. Cement mortar waterproofing agent of surface layer material was better with the thickness of 1.5cm to achieve a certain water effect. The test results of lightweight masonry structures fire insulation properties showed that the thermal conductivity coefficient of lightweight aggregate concrete ranged from 0.690 kcal/m.hr.℃ ~ 0.750 kcal/m.hr.℃ while normal weight concrete ranged from 1.330 kcal/m.hr.℃ ~ 1.425 kcal/m.hr.℃. The thermal conductivity coefficient of lightweight concrete is only 53% of normal weight concrete which compacted with conducive performance of energy-saving and heat insulation. When lightweight concrete specimens are under fire test, case flaking would occur due to the steam pressure and even lead to board damage if the specimen is not completely dry. There are less likely to have case flaking in normal weight concrete beams or specimens. If the specimen is dry, the fire performance of lightweight concrete is usually better than normal weight concrete.
本文旨在探討輕質骨材混凝土構件之製造技術與工程性質,並進行輕質骨材混凝土構件防火隔熱性質研究。研究內容規劃為三部份:一、利用低壓灌漿工法,調整不同的漿體材料組成比例以預鑄輕質圬工空心磚。研究上是以單位重小於1000 kg/m3的輕質骨材,配合不同的水膠比及不同的波索蘭材料取代水泥比例下,研討輕質圬工空心磚的單位重、抗壓強度等各項工程性質的變化。二、添加爐石粉取代部分水泥,透過適當配比,進行高性能混凝土圬工磚之產製技術研究,並依據規範試驗圬工磚之單位重、抗壓強度、吸水量、最大吸水率之含濕率、熱傳導係數、阻熱性及遮焰性等各項性能,最後於製品表面增加不同厚度及材質之面層材料,並試驗其防水性能。三、進行輕質圬工構件防火隔熱性能之研究,其中包含輕質骨材混凝土基本隔熱性能測試、輕質圬工構件的耐火試驗。另一方面,並灌置相同強度之常重混凝土試體,以為比較分析。 由圬工空心磚之製作技術與工程性質試驗結果顯示,本試驗工法所製作之試體能有效的降低單位重,其單位重可降低至800 kg/m3以下,約是一般常重混凝土的三分之一,其抗壓強度範圍約在7 MPa到11 MPa之間,也可滿足非結構用空心磚類的基本強度要求。 由高性能輕質粒料混凝土圬工磚試驗結果顯示,圬工磚單位重介於1,530kg/m3~1,620kg/m3之間,抗壓強度介於193kgf/cm2 ~287kgf/cm2之間(平行受力方向)及241kgf/cm2~419kgf/cm2之間(垂直受力方向),吸水量介於0.09 g/cm3~0.12 g/cm3之間,最大吸水率之含濕率介於53% ~59%之間,熱傳導係數介於0.29 kcal/m.℃.hr~0.36 kcal/m.℃.hr,阻熱性合格時效介於125分鐘~208分鐘,防火時效為2及3小時,面層材料則以水泥系水泥砂漿防水劑效果較佳,在厚度1.5cm即可達到一定之防水效果。 由輕質圬工構件之防火隔熱性質研究試驗結果顯示,輕質骨材混凝土的熱傳導係數介於0.690 kcal/m.hr.℃~0.750 kcal/m.hr.℃之間,而常重混凝土則介於1.330 kcal/m.hr.℃~1.425 kcal/m.hr.℃之間,輕質混凝土熱傳導係數僅常重混凝土者的53%左右,相當有利於節能隔熱的性能。輕質混凝土版試體在進行防火試驗時,若試體未進行完全烘乾,將會因蒸汽壓力而發生表面剝落的情形,甚至導致版的破壞。常重混凝土樑或版試體則較不會發生表面剝落的情形。若為乾燥試體,則輕質骨材混凝土防火性能優於常重混凝土。
URI: http://hdl.handle.net/11455/16438
其他識別: U0005-1605201113385800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1605201113385800
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.