Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16450
標題: 拋棄式奈米金修飾電極在分析化學的應用
Electroanalysis Based on Disposable Gold Nanoparticle-plated Electrodes
作者: 宋岳憲
Song, Yue-Shian
關鍵字: Gold nanoparticle
奈米金
Screen printed electrode
Electroanalysis
網版印刷電極
電分析
出版社: 化學系所
引用: 1. 龔建華。你不可不知的奈米科技影響世界、改變未來。2002。 2. T. Teranishi,I. Kiyokawa, M. Miyake,dv.Mater. 1998, 10, 8, 596. 3. E. Majid, S. Hrapovic, Y. liu, K. B. Male, J. H. T. Luong, Anal. Chem. 2006, 78, 762-769. 4. 董慕愷,陳郁文。科學發展。2005, 390, 46-49。 5. 郭清癸, 黃俊傑,牟中原。物理雙月刊。2001, 23, 6, 614- 624。 6. 吳國卿。奈米尺度下的黃金新視野。2005。 7. 陳炳煇,蔡建瑩,蔡宜樺。中華民國力學會訊。2003,101,1- 10。 8. Richard Feynman, A Talk of There’s plenty of Room at the Bottom, Annual Meeting of the American Physical Society at Cal. Tech., 1959. 9. T. Kobayashi, M. Haruta, H. Sano, M. Nakane, Sen. Actu 1988, 13, 4, 339-349. 10.M. Kopanica, L. Novotny, Anal. Chim. Acta 1998, 368,211. 11.M. S. El-Deab, T. Oshaka, Electrochem.Commun.2002, 4, 288-292. 12.S. Roh, S. Yao, W. J. Buttner, J. R. Stetter, IEEE Sensors 2003, Publisher: New York, 22-24. 13.J. S. Bradley, The Chemistry of Transition Metal Colloids. In Clusters and Colloids, G. Schmid Ed., VCH Publishers: New York, NY(USA), 1994, 459-537. 14.M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 4701-7402. 15.M. T. Reetz, M. Winter, R. Breinbauer, T.-A. Thomas, W. Voge, Chem. Eur. J. 2001, 7, 1084-1094. 16.科儀新知。民國89年, 3, 22, 72-82。 17.P. R. Baldwin, K. N. Thomasen, Talanta 1991, 38, 1. 18.D. W. Arrigan, D. W. M., Analyst 1994, 119, 1953. 19.A. J. Bard, L.R. Faulkner, “Electrochemical Methods”, John Wiley & Sons, 1980, 233. 20.H. Okuma, H. Takahashi, S. Sekimukai, Anal. Chim. Acta 1991, 244, 161-164. 21.J. Wang, In Analytical Methods, VCH, New York , 1994. 22.A. J. Bard, L.R. Faulkner, in Electrochemical Methods, New York, 1980. 23.E. Barendrecht, J. Electroanal. Chem. 1967, 2, 53. 24.R.S. Stojanovic, A.M. Bond, E.C.V Butler, Anal. Chem. 1990, 62, 2692. 25.C. Abernathy, R. L. Calderson, W. R. Chappel, Arsenic Exposure and Health Effects; Elsevier, London, 1999. 26.F. J. Peryea, R. Kammereck, Water Air Soil Pollut. 1997, 93, 243. 27.R. Dhar, B. Biswas, G. Samanta, B. Mandal, D. kraborti, S. Roy, A. Jafar, A. Islam, Curr. Sci. 1997, 73, 48. 28.S. C. Peters, J. D. Blum, B. Klaue, M. R. Karagas, Environ. Sci. Technol. 1999, 33, 1328. 29.http://www.who.int/int-fs/en/fact210.html,1993. 30.http://www.atsdr.cdc.gov/ 31.http://www.niea.gov.tw/analysis/publish/month/46/46th4- 3.htm 32.G. F. Kirkbright, L. Ranson, Anal. Chem. 1971, 43, 1238. 33.R. J. A. Van Cleuvenbergen, W. E. Van Mol, F. J. Adams, J. Anal. At. Spectrom. 1988, 3, 169. 34.B. S. Chana, N. J. Smith, Anal. Chim. Acta. 1987, 197, 177. 35.R. K. Anderson, M. Thompson, E. Culbard, Analyst 1986, 111,1143. 36.R. K. Anderson, M. Thompson, E. Culbard, Analyst 1986, 111,1153. 37.J. A. Cox, P. J. Kulesza, Anal. Chem. 1984, 56, 1021. 38.L. K. Tan, J. E. Dutrizac, Anal. Chem. 1986, 58, 1383. 39.W. Holak, Anal. Chem. 1980, 52, 2189. 40.F. G. Bodewing, P. Valenta, H. W. Nurnberg, Fresenius Z. Anal. Chem.1982, 311, 187. 41.T. W. Hamilton, J. Ellis, Anal. Chim. Acta 1980, 119, 225. 42.G. Forsberg, J. W. O’Laughlin, R. G. Megargle, Anal. Chem. 1975, 47, 1586. 43.陳誼珍。鎂烷氧化物的合成及其在乳酸交酯之開環聚合之應用 與聚乳酸交酯在金奈米粒子合成之應用。國立中興大學化學研 究所碩士論文。2005。 44.F.-K. Liu, S.-Y. Hsieh, F.-H. Ko, T.-C. Chu, B.-T. Dai, Jpn. J. Appl. Phys. 2003, 42, 4147-4151. 45.A. O. Simm, C. E. Banks, R. G. Compton, Electroanalysis 2005, 17, 335. 46.R. Feeney, S. P. Kounaves, Anal. Chem. 2000, 72, 2222. 47.R. P. Pohanish, S.A. Greene, Hazardous Materials Handbook and Van Nostrandeinhold, New York, 1996. 48.P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, second ed., Wiley, New York, 1999. 49.R. G. Hendrickson, A. Chang, R. J. Hamilton, Am. J. Ind. Med. 2004, 45, 346. 50.S. Gao, K. K. Tanji, S. C. Scardaci, Agron. J. 2004, 96, 70. 51.N. S. Lawrence, J. Davis, R. G. Compton, Talanta 2000, 52, 771. 52.W. Puacz, W. Szahun, Analyst 1995, 120, 939. 53.J.-R. Fernandez, J. M. Costa, R. Pereiro, A. Sanz- Medel, Anal. Chim. Acta 1999, 398, 23. 54.M. A. Spaziani, J. L. Davis, M. Tinani , M. K. Carroll, Analyst 1997, 122, 1555. 55.N. S. Lawrence, P. D. Randhir, J. Wang, Anal. Chim. Acta 2004, 517, 131. 56.V. Kuban, P. K. Dasgupta, J. N. Marx, Anal. Chem. 1992, 64, 36. 57.B. S. M. Kumar, N. Balasubramanian, Analyst 1990, 115, 859. 58.J. P. Hart, A. K. Abass, Anal. Chim. Acta 1997, 342, 199. 59.P. Jeroschewski, S. Steuchart, M. Kuhl, Anal. Chem. 1996, 68, 4351. 60.I. G. Casella, M. R. Gauascito, E. Desimoni, Anal. Chim. Acta 2000, 409, 27. 61.J. P. Hart, A. K. Abass, Anal. Chim. Acta 1997, 342, 199. 62.V. Stanic, T. H. Estell, A. C. Pierre, R. J. Mikula, Electrochim. Acta 1998, 43, 2639. 63.F. Hissner, J. Mattusch, K. Heining, J. Chromatogr. A 1998, 848, 503. 64.N. S. Lawrence, L. Jiang, T. G. J. Jones, R. G. Compton, Anal. Chem. 2003, 75, 2054. 65.Y.-H. Tse, P. Janda, H. Lam, A. B. P. Lever, Anal. Chem. 1995, 67, 981. 66.M. I. Prodromidis, P. G. Veltsistas, M. I. Karayannis, Anal. Chem. 2000, 72, 3995. 67.D. Giovanelli, N. S. Lawrence, L. Jiang, T. G. J. Jones, R. G. Compton, Analyst 2003, 128, 173. 68.I. G. Casella, M. Contursi, E. Desimoni, Analyst 2002, 127, 647. 69.J.-M. Zen, P.-Y. Chen, A. Senthil Kumar, Electroanalysis 2002, 14, 513. 70.J.-M. Zen, J.-L. Chang, P.-Y. Chen, R. Ohara, K.-C. Pan, Electroanalysis 2005, 17, 739. 71.D.-M. Tsai, A. Senthil Kumar, J.-M. Zen, Anal. Chim. Acta 2006, 556, 145. 72.M. D. Lay, K. Varazo, J. L. Stickney, Langmuir 2003, 19, 8416. 73.E. A. Rochette, B. C. Bostick, G. Li, S. Fendorf, Environ. Sci. Technol. 2000, 34, 4714. 74.S. Budaveri (Ed.), The Merck Index, 11th ed. 1989, 834, 127. 75.T. M. Loehr, R. A. Plane, Inorg. Chem. 1968, 7, 1708. 76.S. S. M. Hassan, S. A. M. Marzouk, H. E. M. Sayour, Anal. Chim. Acta 2002, 466, 47. 77.C. Shi, F. C. Anson, Inorg. Chem. 1998, 37, 1037-1043. 78.N. Kobayashi, P. Janda, A. B. P. Lever, Inorg. Chem. 1992, 31, 5172-5177. 79.S. Fukuzumi, K. Okamoto, C.P. Gros, R. Guilard, J. Am. Chem. Soc. 2004, 126, 10441-10449. 80.N. Mano, H.–H. Kim, Y. Zhang, A. Heller, J. Am. Chem. Soc. 2002, 124, 6480-6486. 81.J. Maruyama, M. Inaba, Z. Ogumi, Electrochim. Acta 1999, 45, 415-422. 82.M. S. El-Deab, T. Oshaka, J. Electrochem. Commun. 2003, 553, 107-115. 83.H.-F. Cui, J.-S. Ye, W.-D. Zhang, J. Wang, F.-S. Sheu, J. Electroanal. Chem. 2005, 577, 295-302. 84.X. R. Ye, Y. Lin, C. M. Wai, Chem. Comm. 2003, 642-643. 85.Y. Lin, X. Cui, X. Ye, Electrochem. Commun. 2005, 7, 267-274. 86.O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, K.-I. Ota, Electrochem. Commun. 2004, 6, 105- 109. 87.B. Vaidya, S. W. Watson, S. J. Coldiron, M. D. Porter, Anal. Chim. Acta 1997, 357, 167-175. 88.V. Stamenkovic, N. M. Markovic, P. N. Ross, J. Electroanal. Chem. 2001, 500, 44-51. 89.宋岳憲。網版印刷銅電極之光電化學研究與應用。國立中興大學 化學研究所碩士論文。2001。 90.J.-M. Zen, Y.-S. Song, H.-H. Chung, C.-T. Hsu, A. S. Kumar, Anal. Chem. 2002, 74, 6126-6130. 91.台灣哈約儀器精密股份有限公司。 DO100溶氧度計操作手 冊。民國89年。 92.吳宗榮,蔡基湧。水及廢水分析。台灣。民國78年。 93.Standard Methods for the Examination of Water and Wastewater, American Public Health Association 1985, 418. 94.A. Sarapuu, K. Tammeveski, T. T. Tenno, V. Sammelselg, K. Kontturi, D. J. Schiffrin, Electrochem. Commun. 2001, 3, 446-450. 95.A. Franceschetti, S. J. Pennycook and S. T. Pantelides, Chem. Phys. Lett. 2003, 374, 471-475. 96.M. O. Finot, G. D. Braybrook, M. T. McDermott, J. Electroanal. Chem. 1999, 466, 234-241. 97.M. S. El-Deab, T. Oshaka, T. Ohsaka, J. Electrochem. Soc. 2003, 150, 851-857. 98.P. V. Lakshminarayanan, H. Toghiani, C. U. Pittman Jr., Carbon 2004, 42, 2433.
摘要: 本論文成功將奈米金修飾網版印刷碳電極 (gold nanoparticle-plated screen printed carbon electrode, AuNP/SPE) 應用於重金屬三價砷 (As3+)、硫 (S2-) 和溶氧 (dissolved oxygen, DO) 的分析偵測。網版印刷碳電極 (screen-printed carbon electrode, SPE) 具有可拋棄式、價格低廉、方便攜帶及多重設計變化等優點。本研究利用兩種不同的修飾方法製備奈米金電極,(一) 是透過化學還原的方式將以聚乳酸交酯為保護劑合成的奈米金粒子 (PLA-AuNP) 修飾在SPE電極上形成PLA-AuNP/SPE ,並將之應用於As3+ 及S2- 的偵測。 (二) 則是藉由電沈積方法將奈米金粒子 (AuNP) 修飾在SPE電極上形成AuNP/SPE,可用來偵測溶液中的溶氧量。 本論文第一部份,主要是藉由PLA-AuNP/SPE的相關研究,透過紫外光-可見光光譜儀 (UV/Vis)、場發射掃描電子顯微鏡 (FE-SEM)、穿透式電子顯微鏡 (TEM) 來鑑定奈米金粒子及其結構,並針對其對於三價砷 (As3+) 的催化行為作探討。研究結果顯示,測得的濃度校正曲線範圍為0.04−30 µM,偵測極限為0.09 ppb (S/N=3),回歸係數為0.9992。最後,進一步將此方法實際應用於環境水樣的分析。 第二部份則是應用PLA-AuNP/SPE對環境中重金屬三價砷 (As3+) 的分析機制,間接的由抑制訊號來偵測環境中之硫 (S2-),其反應機構可藉由拉曼光譜和X光光電子能譜儀 (XPS) 來得到印證,最後結果顯示此系統對於硫的偵測有不錯的靈敏度。在最佳化的條件下,對於硫 (S2-) 偵測,測得的濃度校正曲線範圍為5−700 µM,偵測極限為0.04 µM (S/N=3),回歸係數為0.999。最後將真實樣品偵測結果與光譜法 (利用Caro’s reaction) 所得之結果加以比較,發現具有良好的相關性及效能。 第三部份使用AuNP/SPE當工作電極,係在pH 8磷酸緩衝溶液之環境下,施以 –0.2 V vs. Ag/AgCl的還原電位,透過光照的方式產生還原光電流。我們發現所產生的光電流大小和溶氧量 (DO) 有正比關係,經過一系列光電化學與溶氧量的詳細機制研究,實驗中發現其和光電流呈線性關係。換言之,可由光電流推算溶氧之含量﹔簡單的來說,其功能類似一溶氧度計。
In recent past, application of electrochemical methods for determination (sensors) in aquatic, industrial and biological has received a significant share of attention of world class scientist due to their simplicity, reduced cost and eco-friendly process. With the use of screen-printed carbon electrode (SPE) combined with suitable modifiers, heavy metals such as As3+, Hg etc., gases CO and O2 etc., are successfully identified in aqueous solutions electrochemically. This thesis has divided into three parts based on the nature of obtained results. The first part deals detection of As3+ using poly lactide gold nano-partilces modified screen printed electrode (PLA-AuNP/SPE). Preparation and characterization of PLA-AuNP/SPE was carried out using SEM, TEM and electrochemical technique. Competitiveness of PLA-AuNP/SPE on detection of As3+ was compared with other electrodes using differential pulse stripping voltammetry (DPSV). Wide range of linearity has been drawn on calibration plot (0.04-30 µM) with regression coefficient of 0.999 by maintaining the signal to noise ratio is 3 (S/N = 3). The sensitivity was good enough to detect As3+. This approach provided a selective detection for As3+ in aqueous solution and it helps to determine As3+ in natural water finally. The second part describes hydrogen sulfide detection by indirectly monitoring As3+ at a poly(L-lactide) stabilized gold nanoparticles modified SPE. Surface analysis by XPS together with electrochemical and Raman spectroscopic characterization were used to elucidate the detection mechanism. DPSV results showed a linear calibration curve in the window of 5-700 µM with the regression coefficient value and a detection limit (signal/noise = 3) 0.999 and 0.04 µM, respectively. The sensitivity observed in present study is good enough to detect sulfide at levels lower than the current EPA standard. The proposed electrochemical approach is successfully used for the determination of sulfide in acid rain and hot spring. The last part of this thesis demonstrates photocatalytic amperometric sensor for the determination of dissolved oxygen (DO) in phosphate buffer solution (PBS) using a disposable (AuNP/SPE). Experimental conditions for optimization of DPSV such as pH and potential were systematically worked out and found pH 8 PBS and -0.2 V vs Ag/AgCl, as optimum. The analytical applications for DO measurement showed a good linearity with appreciable regression coefficient comparable with that of recent DO reports. DPSV results obtained from real water samples using the proposed method also showed values close to the commercial DO meter. This method offers simple and easy DO measurements with good reproducibility. Finally consolidate the summery of the present work and points out the scope of the further work.
URI: http://hdl.handle.net/11455/16450
其他識別: U0005-1101200711042900
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.