Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16491
標題: 以含水量修正波速進行現地混凝土強度可行性評估
The feasibility study of using the pulse velocity in consideration of moisture effect to estimate the in-place strength of concrete
作者: 林中勇
Lin, Chung-Yung
關鍵字: ultrasonic pulse velocity
超音波法
nondestructive evaluation
compressive strength
敲擊回音法
非破壞性檢測
出版社: 土木工程學系所
引用: 1. 詹智捷,”混凝土含水狀態之量測與超音波波速關係之建立” ,中興大學,2010. 2. ASTM C 805, "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 3. ASTM C 803, "Standard Test Method for Penetration Resistance of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 4. ASTM C 1150, "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02. 5. ASTM C 900, "Standard Test Method for Pullout Strength of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 6. ASTM C 597, "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02. 7. V.R. Sturrup, F.J. Vecchio and H. Caratin, “Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227. 8. ASTM C 1074, "Standard Practice for Estimating Concrete Strength by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02. 9. ASTM C 873, "Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02. 10. ACI Committee 228 Report (1996). In-Place Methods to Estimate Concrete Strength, ACI Standard ACI 228.1R-95, 1996 11. 邱欽賢 (2002)“水工結構混凝土之抗沖蝕性”,國立中興大學土木工程學系碩士論文,2002 年6 月。 12. 劉玉雯 (2006)“應用於水工結構表層之高性能混凝土磨損行為”,國立中興大學土木工程學系博士論文,2006 年1 月。 13. 楊仲家、黃然、葉為忠 (1996)“以微觀力學探討粗骨材對高性能混凝土之影響”,第三屆結構工程研討會,pp.1785-1793,1996。 14. Brian, B. Hope and Paul, M. Hewitt (1985).“Progressive Concrete Mix Proportioning”, ACI Materials Journal, Vol82, No.3, May-June 1985,pp.350-356 15. Charles, T. Kennedy (1940).“The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400. 16. Berntsson eif, Chandra Satish, and Kutti Tomas (1990).“Principles and Factors Influencing High-Strength Concrete Production”, Concrete International,Vol.12, No.12, December 1990, pp.59-62. 17. Yang, C.C. and Huang, R. (1996).“ A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research,Vol.26, No.10, 1996, pp.1567-1577. 18. Chan, H.J., Yen, T., Lai, T.P. and Huang, Y.L. (1999).“Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999,pp.29-37. 19. ASTM C 1383 (1998). "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Inpact-Echo Method" Annual Book of ASTM Standards, Vol. 04.02.,1998. 20. Jones, R. (1954).“Testing of Concrete by an Ultrasonic Pulse Technique”,RILEM Int. Symp. On Nondestructive Testing of Materials and Structures,Paris. Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19,2nd part, November 1954. 21. Kaplan, M.F. (1952).“Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March, 1952, pp.853-867. 22. Popovics, S., Rose, L. Joseph, and Popovics, John S. (1990b).“The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20,No.2, 1990, pp.259-270. 23. Popovics, S. (1987).“A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock,SEM-RILEM International Conference, June 1987,Houston Texas,pp.170-174. 24. Kaplan, M.F. (1958).“Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8,February 1958, pp. 675-688. 25. Andersen Johannes and Nerenst Poul (1952). Wave Velocity in Concrete, ACI Journal, Proc. Vol.48, Apr. 1952, pp. 613-636. 26. Komloš, K., Popovics, S., Nürnbergerová, T., Babál, B. and Popovics, J.S. (1996).〝Ultrasonic Pulse Velocity Test of Concrete Properties as Specified inVarious Standards,〞Cement and Concrete Composites Volume: 18, June,1996, pp. 357-364. 27. Pessiki, P. S., and Carino, N.J. (1988).“Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85,No.5, pp.389-399. 28. Sturrup, V.R., Vecchio, F.J., and Caratin, H. (1984).“Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227 29. 郭世芳,”探討超音波速度與混凝土抗壓強度之關係與其應用”, 國立中興大學土木工程學系博士論文,2006 年7月。 30. 島川正憲 著,賴迪陽 譯 (1982)“超音波工學理論實務”,復漢出版社,1982年。 31. 黃啟貞 (1980)“超音波檢測試驗法”,中華民國非破壞檢測協會(上冊),1980年。 32. Naik, T.R. (1979).“The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M.Sabnis and N. Fitzsimons, Eds, October 1979. 33. ASTM C39/C39M“Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens” Annual Book of ASTM Standards, Vol. 04.02. 34. 中國國家標準CNS 1232(2002),混凝土圓柱試體抗壓強度檢驗法。 35. Lin, Y., Kuo, S.F., Hsiao, C., and Lai, C.P., “Investigation of Pulse Velocity-Strength Relationship of Hardened Concrete,” ACI Materials Journal, Vol. 104, No. 4, 2007, pp. 344-350. 36. Anderson David, A. and Seals Roger, K. (1981).“Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2,March-April 1981, pp.116-122. 37. Andersen Johannes and Nerenst Poul (1952). Wave Velocity in Concrete, ACI Journal, Proc. Vol.48, Apr. 1952, pp. 613-636. 38. Aïtcin, Pierre-Claude and Neville, Adam (1993).“High-Performance Concrete Demystified”, Concrete International, Vol.15, No.1, January 1993,pp.21-26. 39. Lin, Y.C., Lin, Y., Lin Y.F., “Establishment of the relationship between the plus velocity and strength of concrete at various ages,” 4th International Conference on Construction Materials, compact disc, S1-3-4. 40. 賴朝鵬,” 混凝土材料組成對其流動性質與波傳行為之影響”,中興大學,1999. 41. V.R. Sturrup, F.J. Vecchio and H. Caratin, “Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227 42. 干裕成 (2003) “劣化混凝土材料應力波傳速度與E 值、老化時程及 抗壓強度之關係”行政院原子能委員會委託研究計畫研究報告,2003 年12 月。 43. 沈得縣、黃兆龍 (1991) “高爐熟料與飛灰對新拌水泥漿體水化機理影 響之研究”,中國土木水利工程學刊,第三卷,第四期, pp. 333-338。 44. . 沈進發 (1983)“混凝土品質控制”,第三版,pp. 7-351983 年9 月。 45. 林炳炎 (1993)“飛灰與飛灰混凝土”,現代營建,1993 年7 月 46. 苗伯霖 (1996)“高性能混凝土配比施工及品檢應注意問題”,高性能混凝土研討會論文集,pp.1-34,台北,1996 年4 月。島川正憲 著,賴迪陽 譯 (1982)“超音波工學理論實務”,復漢出版社,1982年。 47. 陳建旭 (1986)“大理石之微觀結構對工程性質之影響”,碩士論文,國立中興大學土木研究所,台中,1986 年。 48. 黃兆龍 (1997)“混凝土性質與行為”,詹氏書局,1997 年8 月。 49. 黃兆龍,蘇南 (1990)“台灣中北部主要河川粗骨材巨觀工程性質究”,土木水利,第十七卷,第一期,pp. 43-59,1990。 50. 黃啟貞 (1980)“超音波檢測試驗法”,中華民國非破壞檢測協會(上冊),1980年。 51. 劉賢淋、洪如江 (1984)“風化作用對岩石材料強度性質影響之研究”,碩士論文,國立台灣大學土木工程研究所,台北,1984 年。 52. ACI Committee 228 Report (1996). In-Place Methods to Estimate Concrete Strength, ACI Standard ACI 228.1R-95, 1996.
摘要: In this thesis, a concrete plate made on construction site was used to conduct a feasibility study of using pulse velocity to evaluate the in-place strength of concrete in consideration of the effect of moisture on strength evaluation. This study established the relationship between pulse velocities and. strength of concrete built up with 18 in-place made φ10*20 cm cylinders. In addition, the study also established the relationship between the conductivity coefficients and the moisture content of concrete from 17 cubes of 15*15*15cm. Through modification of pulse velocity to account for the moisture content of the concrete plates, the pulse velocities measured by ultrasonic tester and impact echo tester (ASTM) were used to obtain predicted strengths which were then compared with compressive strengths of drilled cores of plates. The outcomes of this study indicated that it should be feasible to replace ultrasonic pulse velocity (UPV) with the impact-echo surface P-wave velocity (IEPV) for strength estimation. The results for hardened saturated specimens indicated that the ratio of the surface P-wave velocity to internal ultrasonic pulse velocity is 1. For the hardened concrete, SCC and 420 kgf/cm2-strength concrete rendered similar prediction results. For hardened concrete, the strength prediction errors with UPV were greater than that with IEPV and were mostly overestimated. Possible reasons could be the saturation degrees were rated by conductivity coefficients which had effective depth of 14 mm whereas the thickness of plates was 200 mm, the values of conductivity coefficients only showed the moisture condition on the specimen surfaces. In addition, plates were large specimens in which internal water was not easily lost. So there exists over correction due to the fact that the internal ultrasonic pulse velocity was actually larger than that of the pulse propagating along concrete surface. It can be concluded that the use of moisture-corrected pulse velocity to evaluate concrete strength is only suitable for the IEPV case.
本研究中以版試體模擬現地結構,並進行波速強度預測,以評估該飽和度與波速修正方法於現地應用之可行性。本研究係利用現場澆置的18顆φ10*20cm之圓柱試體建立波速與強度的率定曲線及17個15*15*15cm的方塊試體所建立之飽和度與導電值的率定曲線,透過HI-520含水量測定儀對板試體所測得之導電度與超音波試驗儀、敲擊回音試驗儀器(ASTM)所測得之波速(IEPV)進行修正得到預估強度,再與版(試體)的鑽心試體抗壓強度試驗作比較。研究結果以表面P波取代UPV進行強度評估應為可行方法,由硬固飽和試體量測結果所示,表面P波在表面含水狀態時波速與對接之內部UPV比值為1,在硬固混凝土部份,SCC與強度420 kgf/cm2之混凝土強度評估結果皆相同,在以UPV進行強度評估的過程中,硬固混凝土所得之結果整體誤差均大於IEPV,且多為高估,其可能原因為飽和度率定以導電值進行率定,其有效深度約14mm,然而版試體厚度為200mm,導電值所代表之飽和度僅為試體表層含水狀況,加以版試體為較大之試體,內部水其實散失不易,故所得之波速實為大於表層量測飽和度之波速,故造成修正過多。因此以混凝土含水量修正波速之強度評估法僅適用於敲擊回音表面波速量測法(IEPV)。
URI: http://hdl.handle.net/11455/16491
其他識別: U0005-2208201113101500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201113101500
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.