Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16508
標題: 輕質骨材吸水性對卜作嵐混凝土界面過渡區微結構之影響
Influences of water absorbency on the microstructure of interfacial transition zone of lightweight aggregate of concrete containing pozzolanic materials
作者: 游雅婷
Yu, Ya-Ting
關鍵字: ITZ
界面過渡區
lightweight aggregate
fly ash
slag
microstructure
輕質骨材
飛灰
爐石
微結構
出版社: 土木工程學系所
引用: [1] 顏聰,陳豪吉,「輕質骨材混凝土」,中華輕質骨材協會,2005。 [2] Aurich, K.,「Kleine Lwichtbeton Runde」, Bauverlag GMBH, Wiesbaden and Berlin, pp.32-39, 1971. [3] 王櫻茂、顏聰「人造輕質骨材燒製及其物理化學性質之試驗研究」,營建知訊,120 期,pp.17-25(1992)。 [4] 陳澤修「綠色建築新材料冷結型煤灰輕質骨材」,現代營建,208 期(1997)。 [5] J.E. Conley, H. Wilson, T.A. Klinefelter et. al., “Production of Lightweight Concrete Aggregatesfrom Clays, Shales, Slates and Other Material,” U.S. Bureau of Mine Reports. Invest. 1948. [6] E.G. Ehlers, “The mechanism of lightweight aggregate formation,” Am. Ceramic Soc. Bull.,Vol.37(2), pp.95-99, 1958. [7] C.C. Tsai, K.S.Wang, I.J.Chiou, “Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage ludge,” Journal of Hazardous Materials, Vol.134, pp.87-93, 2006. [8] L. Heller-Kallai, I. Miloslavski, Z. Aizenshtat and L. Halicz, “Chemical and mass spectrometric analysis of volatiles derived from clays,” Am. Mineral., Vol.73, pp.376-382, 1988. [9] 蕭博仰,「水庫淤泥輕質骨材之膨脹氣體生成研析,」國立中興大學土木工程研究所,2006。 [10] C.M. Riley, “Relation of chemical properties to the bloating of clays,” J. Am. Ceramic Soc.,Vol.34(4), pp.121-128, 1951. [11] 王櫻茂「人造輕質骨材混凝土」,豐生出版社(1976)。 [12] 林維明、吳介源「結構用輕質粒料混凝土之經濟性評估」,台灣公路工程,第二十六卷,第五期,pp.36-48(1999)。 [13] 高健章、黃兆龍、沈進發、陳式毅、陳朝和,「輕質混凝土在國內發展之研究」(1993)。 [14] 顏聰,「輕質粒料混凝土」,中華輕質粒料協會,2005,第91~101頁 [15] 陳豪吉,「以台灣地區生產之輕質骨材探討輕質混凝土之配比、製作及強度性質」,博士論文,中興大學土木工程系,1998。 [16] H.J. Chen,T.Yen,T.P.Lai,and Y.L. Huang,”Determination of the dividing strength and its relation to the concrete strength in lightweight aggreg cement & Concrete Composites,Vol.21,pp.29-37,1999 [17] 顏聰,「輕質粒料混凝土之力學性質」,高性能混凝土於結構工程之應用研討會論文集,台中,2003.12,pp.1-1~1-21。 [18] How-Ji Chen,Tsong Yen,and Kuan-Hung Chen,”Evaluating Elastic Modulus of Lightweight Aggregate”,ACI Meterials Journal,Vol.100,No.2,pp.108-113,2003 [19] 黃兆龍,「卜作嵐混凝土使用手冊」,科技圖書館股份有限公2007年11月。 [20] 陳清泉、陳振川,「爐石為水泥熟料與填充料對混凝土特性影響之文獻及國外現況調查研究」,財團法人台灣營建研究中心,1987年3月。 [21] Sidney Mindess, J. Francis Young and David Darwin, "Concrete",second Edition, 2003. [22] J. P. Ollivier, J. C. Maso, B . Bourdette(1994), “Interfacial Transition Zone in Concrete” ,Laboratoire Materiaux et Durabilite des Constructions. [23] Larbi, Joseph, and Aduamoah, "The Cement Paste-Aggregate Interfacial Zone in Concrete",Nether lands :Technische Universiteit Delft(1991). [24] Barnes, B. D., S. Diamond, and W. L. Dolch, “The Contact Zone Between Portland Cement Paste and Glass 'Aggregate'Surfaces",Cement and Concrete Research, Vol.8, pp.233-244,(1978). [25] Zimbelmann,R.,“AContribution to the Problem of Cement-Aggregate Bond",Cement and Concrete Research,Vol.15, pp.801-808, (1985). [26] Yu,V.Zaitsev(1983),“Crack Propagation in a Composite Meterial”,Fracture Mechanics of Concrete,edited by F.H.Wittmann [27] 黃兆龍,「混凝土性質與行為」,詹氏書局,台北,1997 年。 [28] 呂添民(2005),「添加奈米矽粉水泥漿體性質及微觀結構」,國立臺灣科技大學營建工程研究所碩士論文。 [29] 郭正次、朝春光,「奈米結構材料科學」,全華科圖書股份有限公司,2004 年。 [30] 黃敬文,「奈米矽粉高性能混凝土工程性質研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文,2004 年。 [31] ASTM E92.Standard Test Method for Vickers Hardness of Materials. [32] ASTM E384.Standard Test Method for Microhardness of Materials. [33] 蕭旭志,「界面過渡區對混凝土抗含砂水流衝擊性之影響」,國立中興大學碩士論文,2005年7月。 [34] J.Francis Young & Sidney Mindess,“The Science Technology of Civil Engineering Materials”,Prentice Hall,2000. [35] 黃忠良,「多孔隙材料學」,復漢出版社,1998年六月 [36] ASTM E384. Standard Test Method for Microhardness of Materials. [37] J. M. Gao;C. X. Qian;H. F. Liu;B. Wang;L. Li(2005),“ITZ microstructure of concrete containing GGBS”,Cement and Concrete Research,pp1299-1304.
摘要: 輕質骨材的高吸水性會改變輕質混凝土(LWAC)內界面過渡區微觀結構的組成,進而影響混凝土的握裹強度與性質。本研究使用顆粒密度ρa=1.32g/cm3的輕質骨材,考慮三種不同含水狀態的輕質骨材(0%、35%、100%)、水膠比(W/C)定為0.55,並且分別用飛灰及爐石粉取代20%的水泥,來拌製輕質骨材混凝土試體,進行基本力學性質試驗及微觀結構檢測,包含微硬度試驗、X光繞射試驗、壓汞孔隙試驗及電子光學顯微鏡觀測,來探討輕質骨材吸水性對其界面過渡區之影響。 試驗結果顯示,以絕乾骨材(D)拌製的輕質混凝土其抗壓強度最高,含水率35%者次之,含水率飽和者(S),其抗壓強度為最低。另外,添加適量的卜作嵐材料可以改善界面過渡區內的孔隙結構, 28天齡期時,爐石LWAC有明顯之卜作嵐反應,而飛灰LWAC則在91天齡期時才有著的卜作嵐效應。從微觀試驗發現,輕質骨材含水率越低者,由壓汞孔隙試驗量所測出之水泥漿總孔隙量與毛細孔隙量愈少(D<35%<S),在早齡期時(7天及28天)爐石LWAC有最低的總孔隙量。由X光繞射試驗可以分析出,界面過渡區中的CH含量隨輕質骨材含水率的增加而增多;而在相同含水率狀態下,飛灰LWAC和爐石LWAC也有較低的CH含量。微硬度試驗結果顯示,骨材含水率越低者,界面過渡區內的微硬度值越高;在28齡期時,相同含水率下,爐石LWAC微硬度曲線的凹口較不為明顯。又由SEM觀測出,骨材含水率愈小者,其界面過渡區內之孔隙有較不明顯的趨勢。 基於各項試驗結果可綜合知,輕質骨材的含水率對界面過渡區的性質會產生影響;含水率愈高者有較明顯的界面過渡區,對輕質骨材混凝土的品質愈不利;添加卜作嵐材料可以改善其界面過渡區。
The high water absorption of lightweight aggregate may change the microstructure of Interfacial Transition Zone (ITZ), and affect the bond strength of concrete. The variables considered in this research include one kind of lightweight aggregate (LWA) with particle density of 1.32g/cm3, four water contents of LWA (0%, 35%, 100%), one water to cement ratio of 0.55 and one substitute ratio (20%) of content with fly ash and slug. Standard specimens prepared with lightweight aggregate concrete mixture were adopted for the basic mechanical testing and microstructure detection, including micro-hardness test, X-ray diffraction experiment, mercury intrusion test and SEM observation. Test results show that the LWAC made with dry LWA achieves the highest compressive strength, followed by the 35% and 70% water content of LWA, the saturated LWA is the lowest. Adding adequate amount of pozzolanic material in concrete may improve the pore structure of ITZ. The slag LWAC presents evident pozzolanic reaction at 28 days, whereas the fly-ash LWAC presents the effect until 91 days. It is also found from the MIP test that the lower the water content of LWA is, the less the total pore volume and capillary pore volume in bulk cement paste will be (D < 35% < S).The slag LWAC has the lowest total pore volume at 7 days and 28 days. From the X-Ray detection, it shows that the CH crystal contained in ITZ increases with the water content of LWA. Under the similar water content of LWA, the fly ash LWAC and slag LWAC have lower CH contents. The micros hardness test reveals that the dry LWA presents the highest hardness value in ITZ, the lower the water content of LWA, the higher the hardness value of ITZ. In addition, it is found from SEM observation that the pore in ITZ tends to be not evident when the water content of LWA decreases. Based on the results of experiments it can be concluded that the water content of lightweight aggregate significantly affects the characteristics of ITZ; increasing the water content of LWA may lend to an disadvantageous effect on the properties of ITZ and in turn reduce the mechanical properties of LWAC.
URI: http://hdl.handle.net/11455/16508
其他識別: U0005-2208201117454100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201117454100
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.