Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16515
標題: Investigations on the wave and flow characteristics on a seawall
波浪作用於海堤面之波流特性研究
作者: 柳騫璘
Liu, Chien-Lin
關鍵字: run-up
溯升
flow fields
流場
出版社: 土木工程學系所
引用: 1.Hirt, C. W. and Nichols, B. D. (1981) “Volume of fluid (VOF) method for dynamics of free boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225. 2.Hughes, S. A., and Fowler, J. E. (1991) “Wave-induced scour prediction at vertical walls,” Proc., Coastal Sediments, 91, ASCE, New York, 1886-1899. 3.Herbich, J. B. (1991) “Chap. 18: Scour around pipelines, piles, and seawalls.” Handbook of coastal and ocean engineering, J. B. Herbich, ed., Gulf Pub., Houston, 867-958. 4.Muller, G., (2007) “Flow fields in reflected waves at a sloped sea wall, Ocean Engineering,” Vo1. 34, pp. 1786-1789. 5.Recio, J, Oumeraci, H., (2009) “Processes affecting the hydraulic stability of coastal revetments made of geotextile sand containers,” Coastal Engineering, Vol. 56, pp. 260-284. 6.Shore Protection Manual, (1984) U. S. Army Corps of Engineers, Coastal Engineering Research Center (1984) Shore Protection Manual. U. S. Government Printing Office, Washington, DC. 7.Silvester, R., and Hsu, J. R. C. (1997) Coastal Stabilization, World Scientific, Singapore. 8.Sutherland, J., Brampton, A., Motyka, G., Blanco, B., and Whitehouse, R. (2003) “Beach lowering in front of coastal structures.” Research Scoping Study Rep. No. FD1916/TR1. 9.Tsai, C. P., Wang, J. S., and Lin, C., (1998) “Down-rush flow waves on sloping seawalls,” Ocean Engineering Vo1. 25, pp. 295-308. 10.Tsai, C. P., Chen, H. B., Hwung, H. H., and Huang, M. J. (2005) “Examination of empirical formulas for wave shoaling and breaking on steep slope,” Ocean Engineering, vol. 32, pp. 469-483. 11.Tsai, C. P., Chen, H. B., and You, S. S., (2009) “Toe Scour of Seawall on a Steep Seabed by Breaking Waves,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, vol. 135, pp. 61-68. 12.Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B. and Speziale, C. G. (1992) “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids A, Vol. 4, No. 7, pp. 1510-1520. 13.莊甲子、簡仲璟、江金德 (1996),「堤前水深對三角階梯斜堤溯升之影響」,第十八屆海洋工程研討會論文集,pp. 200-206. 14.莊甲子、林朝福、賴傳賢、江金德 (2001),「平台對階梯海堤之波浪溯升影響」,第二十三屆海洋工程研討會論文集,pp. 273-279. 15.陳鴻彬、蔡清標、陳文喜、游永傑 (2003),「碎波作用下斜面及階梯海堤之堤趾沖刷研究」,中國海事商業專科學校學報,17-46頁。 16.莊甲子、林朝福、江旭中 (2005),「階梯堤面反射率對波浪溯升之影響」,第二十七屆海洋工程研討會論文集,pp. 493-500. 17.賴堅戊、許泰文、林士翔、水谷法美、李光浩 (2008),「波浪於粗粒徑斜坡底床上傳遞之波流特性」,第三十屆海洋工程研討會論文集,pp. 271-276.
摘要: In this paper, numerical simulation was presented to investigate the characteristics of waves on a seawall. The numerical method is based on three dimensional RANS equation and RNG turbulence model, then finite difference method, FAVOR grid obstacle processing technique and volume of fluid method are used for finding the solution. In this paper, the wave flow field chart experimented by Tsai et al. (1998) was used for numerical simulation verification, and the results showed that the simulation result and the experimental result had good match. In this article, different slope angle of dike, three types of dike toe water depths d (0.4m, 1.2m, 2.0m) of slope sea dike and stepwise sea dike, different dike toe speed, different run-up height, different turbulence energy and different turbulent dissipation characteristics will be investigated. From the simulation results, it can be seen that under the slow-down of the slope of the dike surface, the down-rush water flow will tend to have weaker action on the dike toe. When the slope is slowed down and when the wave acts on the dike surface, the broken wave form will be plunging type broken wave. In the run-up process of stepwise sea dike, it will generate clockwise vortex, and during the down-flow process of the water, it will generate counter clockwise vortex. The run-up height and down-rush speed will be affected by non-continuous effect of the stair, hence, the run-up height will be reduced, and the down-rush water flow speed will be slowed down too. Therefore, it can be seen that the stepwise dike can produce good effect. For slope dike, larger turbulent dissipation will be generated only when the wave collide with the dike surface, but for stepwise sea dike, when the wave acts on the dike surface, during the process when water runs up or brushes down along the dike surface, vortex will be formed in the triangular area within the stair, in the mean time, when the water flows down, pretty good energy dissipation effect can be generated due to the vortex.
本文以數值解析方式進行海堤面之波流特性研究。數值解析係以三維RANS方程式及RNG紊流模式為基礎,以有限差分法配合FAVOR網格障礙物處理技術及流體體積法解析之。本文以Tsai et al. (1998)實驗之波流場圖進行數值模擬驗證,顯示模擬與實驗結果很好。探討不同堤面坡度,比較斜面海堤與階梯海堤三種堤趾水深d (0.4m, 1.2m, 2.0m),堤趾速度、溯升高度、紊流能量、消散等特性進行探討。 經由模擬結果發現,堤面坡度減緩的情況下,下刷水流對堤趾之作用愈弱。當坡度變緩的情況下波浪作用在堤面時,導致波浪碎波之型態為捲浪型碎波。而階梯海堤溯升過程中會產生順時針之渦流,水分子往下回流過程中,將產生逆時針之渦流情況。溯升之高度以及下刷的速度受到階梯不連續性之影響,而減少溯升之高度以及減弱下刷水流之速度,由此可知階梯海堤具有良好之效果。斜面海堤只有波浪撞擊在堤面時會產生較大的紊流消散,而階梯海堤波浪作用到堤面時,水分子沿著堤面往上溯升與下刷運動過程中,階梯內的三角形區域會形成渦流情況,同時水流往下迴流時受到渦流的影響有不錯的消能作用。
URI: http://hdl.handle.net/11455/16515
其他識別: U0005-2308201109240400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201109240400
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.