Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16533
標題: 卜作嵐混凝土之微觀結構及強度預測
Research on the Microstructure and Strength Prediction of Pozzolanic Concrete
作者: 鄭安順
Cheng, An-Shun
關鍵字: Pozzolanic materials
卜作嵐材料
Microstructure
Interfacial transition zone
Strength prediction
微觀結構
界面過渡區
強度預測
出版社: 土木工程學系所
引用: 1. J. P. Ollivier, J. C. Maso, B. Bourdette, “Interfacial Transition Zone in Concrete”, Laboratoire Materiaux et Durabilite des Constructions, 1994. 2. T. T. C. Hsu and F. O. Slate, “Tensile Bond between Aggregate and Cement Paste or Mortar”, J. Amer. Concr. Inst. Proc., Vol. 60, No. 2, pp. 465-486, 1967. 3. Yu, V. Zaitsev, “Crack Propagation in a Composite Material”, Fracture Mechanics of Concrete, edited by F.H.Wittmann, 1983. 4. Gengying Li, Xiaohua Zhao, “Properties of concrete incorporating fly ash and ground granulated blast-furnace slag”, Cement and Concrete Composites, Vol. 25, pp. 293-299, 2003. 5. A.H. Memon, S.S. Radin, M.F.M. Zain, Jean-Francois Trottier, “Effects of mineral and chemical admixtures on high-strength concrete in seawater”, Cement and Concrete Research, Vol. 32, pp. 373-377, 2002. 6. A. A. Ramezanianpour and V. M. Malhotra, “Effect of Curing on the Compressive Strength, Resistance to Chloride-Ion Penetration and Porosity of Concretes Incorporating Slag, Fly Ash or Silica Fume”, Cement and Concrete Composites, Vol. 17, pp. 125-133, 1995. 7. L. Douglas, J. Branstetr, “A preliminary study on the alkali activation of ground granulated blast-furnace slag”, Cement and Concrete Research, Vol. 20, pp. 746-756, 1990. 8. Swamy, R.N. and Darwish, A.A., “Engineering properties of concretes with combinations of cementitious materials”, Sixth CANMENT/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Bangkok, Thailand, Proceeding Vol. 2, pp. 661-684, May 31-June 5, 1998. 9. Abrams, D., “Design of concrete mixtures”, Bulletin No. 1, Structural Materials Laboratory, Lewis Institute, Chicago, pp. 20, 1918. 10. Popovics, S., “Analysis of the concrete strength versus water-cement ratio relationship”, ACI Materials Journal, pp. 517-529, September-October, 1990. 11. Mindess, S. and Young, J. F., “Concrete”, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1981. 12. Nagaraj, T.S. and Banu, Z., “Generalization of Abrams’s law”, Cement and Concrete Research, Vol. 26, No. 6, pp. 933-942, 1996. 13. Rao, G.A., “Generalization of Abrams’s law for cement mortars”, Cement and Concrete Research, Vol. 31, pp. 495-502, 2001. 14. Oluokun, F.A., “Fly ash concrete mix design and water-cement ratio”, ACI Materials Journal, Vol. 91, No. 4, pp. 362-371, 1994. 15. Popovics, S., “Factors affecting the relationships between strength and water-cement ratio”, Materials Research and Standards, Vol. 7, No. 12, pp. 527-534, 1967. 16. Popovics, S., “Generalization of Abrams’s law – Prediction strength development of concrete from cement properties”, ACI Materials Journal, Vol. 78, No. 2, pp. 123-129, 1981. 17. Sear, L.K.A J., Dews, B.K., Harris, F.C., and Troy, J.F., “Abrams rule, air and high water-to-cement ratios”, Construction and Building Materials, Vol. 10, No. 3, pp. 221-226, 1996. 18. Pann, k. s., Yen, T. and Tang, c. w., “A new strength model based on water/cement ratio and capillary porosity”, ACI Materials Journal, pp. 311-318, July-August, 2003. 19. K. Ganesh Babu, V. Sree Rama Kumar “Efficiency of GGBS in concrete”, Cement and Concrete Research, Vol. 30, pp. 1031-1036, 2000. 20. K. Ganesh Babu and G. Siva Nageswara Rao “Efficiency of Fly Ash in Concrete with Age”, Cement and Concrete Research, Vol. 26, pp. 465-474, 1996. 21. Ramazan Demirbog˘a, I˙brahim Tu¨rkmen, Mehmet B. Karakoc, “Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete”, Cement and Concrete Research, Vol. 34, pp. 2329-2336, 2004. 22. Sang-Hun Hana, Jin-Keun Kimb and Yon-Dong Park, “Prediction of Compressive Strength of Fly Ash Concrete by New Apparent Activation Energy Function”, Cement and Concrete Research, Vol. 33, pp. 965-971, 2003. 23. Gengying Li, Xiaohua Zhao, “Properties of concrete incorporating fly ash and ground granulated blast-furnace slag”, Cement and Concrete Composites, Vol. 25, pp. 293-299, 2003. 24. A.H. Memon, S.S. Radin, M.F.M. Zain, Jean-Francois Trottier, “Effects of mineral and chemical admixtures on high-strength concrete in seawater”, Cement and Concrete Research, Vol. 32, pp. 373-377, 2002. 25. A. A. Ramezanianpour and V. M. Malhotra, “Effect of Curing on the Compressive Strength, Resistance to Chloride-Ion Penetration and Porosity of Concretes Incorporating Slag, Fly Ash or Silica Fume”, Cement and Concrete Composites, Vol. 17, pp. 125-133, 1995. 26. L. Douglas, J. Branstetr, “A preliminary study on the alkali activation of ground granulated blast-furnace slag”, Cement and Concrete Research, Vol. 20, pp. 746-756, 1990. 27. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (318R-95)”, American Concrete Institution, Farmington Hills, Mich., 1995. 28. 顏聰,「土木材料」,2006年2月。 29. V. R. Sturrup, R. D. Hooton, T. G. Glenddnning, “Durability of fly ash concrete, Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-79, Vol. 1, pp. 71-86. 30. H. Onga, S. Nagatak, “Effect of ash on alkali-aggregate reaction in marine environment”, Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-132, Vol. 1, pp. 577-590, 1992. 31. 黃兆龍,「卜作嵐混凝土使用手冊」,科技圖書股份有限公司,2007年11月。 32. I. Elkhadiria, A. Diouria, A. Boukharia, J. Arideb, F. Puertasc, “Mechanical behavior of various mortars made by combined fly ash and limestone in Moroccan Portland cement”, Cement and Concrete Research, Vol. 32, pp. 1597-1603, 2002. 33. Sidney Mindess, J. Francis Young and David Darwin, “Concrete”, Second Edition, 2003. 34. 黃煥彩、林平全、張東源,「中鋼轉爐石資源化處理及利用情形」,鋼鐵工業爐渣資源化再利用實務研討會論文集,台南,2002年。 35. Lea, F.M., “The Chemistry of Cement and Concrete”, Edward Arnold Ltd London, 1980. 36. Derucher K.N., and C.P. Heins, “Materials for Civil and Highway Engineers”, 1981. 37. 黃兆龍,「高爐熟料在水泥上之利用」,現代混凝土技術研討會,台灣營建研究中心,第162~177頁,台北,1984年。 38. 楊明恭,「中鋼公司高爐熟料之生產及品管狀況簡介」,卜特蘭水泥摻用高爐熟料研討會講義,第30~39頁,台北,1984年。 39. 中央標準局,「CNS 中國國家標準」,1993年。 40. 黃兆龍、王和源、沈得縣、蘇南、林維明、林平全,「公共工程混凝土使用爐石水泥之可行性評估」,專案計畫報告,行政院公共工程委員會,台北,1999年。 41. 黃兆龍,「高爐熟料的性質及在混凝土工程上的應用」,營建世界,第34期,第55~59頁,台北,1984年。 42. 蔡其德,「爐石顆粒粗細對高性能混凝土抗壓強度及脆裂韌性之影響」,碩士論文,國立中興大學土木工程研究所,2007年。 43. 財團法人中興工程顧問社,「混凝土水中磨耗性質之研究」,1997年1月。 44. M. D. Cohen, J. Oiek, and W. L. Dolch, “Mechanism of Plastic Shrinkage Cracking in Portland Cement and Portland Cement-Silica Fume Paste and Mortar”, Cement and Concrete Research, Vol. 20, No.1, pp. 103-119. 1990. 45. 徐照華,「高強度水工混凝土掺加飛灰之耐磨性及裂縫防制」,博士論文,國立中興大學土木工程研究所,2006年。 46. Federal Highway Administration and the Silica Fume Association, “Silica Fume User’s Manual”, 2005. 47. 林平全,「飛灰混凝土」,科技圖書股份有限公司,第四版,第45~53頁,1995年12月。 48. R. O. Lane, “Effect of Fly Ash on Freshly Mixed Concrete”, Concrete International, pp. 50-52, October, 1983. 49. 顏聰、陳冠宏、張朝順、吳秋濃,「以飛灰取代水泥對高強度高性能混凝土質流性質之影響」,新世紀海峽兩岸高性能混凝土研究與應用學術會議論文集,上海同濟大學,第37~42頁,2002年。 50. Gengying Li, Xiaozhong Wu, “Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars”, Cement and Concrete Research, Vol. 35, pp. 1128-1134, 2005. 51. P. B. Banforth, Proceedings of the Institution of Civil Engineers, Part 2, pp. 777-800, 1980 52. 顏聰,「飛灰混凝土之工程性質」,正確使用飛灰以提昇混凝土品質論文集,第105~121頁,台中,1996年。 53. L. Lam, Y. L. Wong, C. S. Poon, “Degree of hydration and gel/space ratio of high-volume fly ash/cement systems”, Cement and Concrete Research, Vol. 30, pp. 747-756, 2000. 54. Shunsuke Hanehara, Fuminori Tomosawa, Makoto Kobayakawa, Kwang Ryul Hwang, “Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste”, Cement and Concrete Research, Vol. 31, pp. 31-39, 2001. 55. J.M. Khatib, “Performance of self-compacting concrete containing fly ash”, Construction and Building Materials, Vol. 22, pp. 1963-1971, 2008. 56. 行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」。 57. K. Ganesh Babu, G. Siva Nageswara Rao, “Efficiency of fly ash in concrete with age”, Cement and Concrete Research, Vol. 26, No. 3, pp. 465-474, 1996. 58. A. Oner, T, S. Akyuz, R. Yildiz, “An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete”, Cement and Concrete Research, Vol. 35, pp. 1165-1171, 2005. 59. Metha, P. K.,“Pozzolanic and Cementitious By-productions as Mineral Admixtures for Concrete–A Critical Review”, First International Conference on the Use of Fly Ash ,Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-79, pp. 1-46, Canada, 1983. 60. 行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,2001。 61. James R. Graham Chairman “Erosion of Concrete in Hydraulic Structure”, Reported by ACI Committee 210, ACI manual Practice Part 1, 1998. 62. 陳清泉、陳振川,「爐石為水泥熟料與填充料對混凝土特性影響之文獻及國外現況調查研究」,財團法人台灣營建研究中心,1987年3月。 63. 林炳炎,「飛灰、矽灰、高爐爐石用在混凝土中」,三民書局,1993年10月。 64. C.L. Hwang, C.Y. Lin, “Strength development of blended blast furnace slag cement mortars”, ACI SP-91, pp. 1323-1340, Detroit, 1986. 65. K. Ganesh Babu, V. Sree Rama Kumar, “Efficiency of GGBS in concrete”, Cement and Concrete Research, Vol. 30, pp. 1031-1036, 2000. 66. A. Oner, S. Akyuz, “An experimental study on optimum usage of GGBS for the compressive strength of concrete”, Cement and Concrete Composites, Vol. 29, pp. 505-514, 2007. 67. Hogan FJ, Meusel JW, “Evaluation for durability and strength development of a ground granulated blast furnace slag”, Cement Concrete Aggr, 3, pp. 40-52, 1981. 68. Meusel JW, Rose JH, “Production of granulated blast furnace slag at sparrows point, and the workability and strength potential of concrete incorporating the slag”, ACI SP-79, pp. 867-890, 1983. 69. Hwang CL, Lin CY, “Strength development of blended blast-furnace slag cement mortars”, ACI SP 91, pp. 1323-1340, 1986. 70. 陳振川、詹穎雯,「添加飛灰與高爐石粉混凝土之體積穩定探討」,高爐石粉與飛灰資源在混凝土工程上應用研討會論文集,台北,1986年。 71. Gengying Li, Xiaohua Zhao, “Properties of concrete incorporating fly ash and ground granulated blast-furnace slag”, Cement and Concrete Composites, Vol. 25, pp. 293-299, 2003. 72. 周俊儒,「同時添加飛灰爐石對高性能混凝土對高性能混凝土抗壓強度及脆裂韌性之影響」,碩士論文,國立中興大學土木工程研究所,2009年。 73. 鄭復平、林銅柱,「高性能混凝土耐火性能研究實尺寸柱材料基本耐火性能」,1997年6月。 74. 財團法人中興工程顧問社,「混凝土水中磨耗性質之研究」,1997年1月。 75. Malhotra, V. M. V. S. Ramachandran, Feldman R.F.&Aitcin P. C., “Condensed Silica Fume in Concrete CRC”, Press Florida, pp. 221, 1987. 76. M. Mazloom, A.A. Ramezanianpour, J.J. Brooks, “Effect of silica fume on mechanical properties of high-strength concrete”, Cement and Concrete Composites, Vol. 26, pp. 347-357, 2004. 77. R. Duval and E.H. Kadri, “Influence of silica fume on the workability and the compressive strength of high-performance concretes”, Cement and Concrete Research, Vol. 28, No. 4, pp. 533-547, 1998. 78. J. Zelic´, D. Rusˇic´, R. Krstulovic´, “A mathematical model for prediction of compressive strength in cement–silica fume blends”, Cement and Concrete Research, Vol. 34, pp. 2319-2328, 2004. 79. K. Ganesh Babu, P. V. Surya Parkash, “Efficiency of silica fume in concrete”, Cement and Concrete Research, Vol. 25, No. 6, pp. 1273-1283, 1995. 80. 顏聰、林宜清、陳豪吉,「HPC早期強度成長之研究」,國立中興大學專題研究計劃報告,1985年。 81. 賴耿陽,「多孔材料學」,復漢出版社,1990年。 82. 蕭江碧,「混凝土耐久性試驗研究–氯離子滲入深度(速率)之探討」,內政部建築研究所研究報告,2004年12月。 83. 黃兆龍,「混凝土性質與行為」,詹氏書局,2002年10月。 84. Md.A.I.Laskar, Rakesh Kumarand B.Bhattacharjee, “Some aspects of Concrete through mercury intrusion porosimetry”, Cement and Concrete Research, Vol. 27, No.1, pp. 93-105, 1997. 85. Larbi, Joseph, and Aduamoah, “The Cement Paste-Aggregate Interfacial Zone in Concrete”, Nether lands: Technische Universiteit Delft, 1991. 86. Barnes, B. D., S. Diamond, and W. L. Dolch, “The Contact Zone between Portland Cement Paste and Glass Aggregate Surfaces”, Cement and Concrete Research, Vol. 8, pp. 233-244, 1978. 87. Zimbelmann, R., “A Contribution to the Problem of Cement-Aggregate Bond”, Cement and Concrete Research, Vol. 15, pp. 801-808, 1985. 88. T.T.C. Hsu and F. O. Slate, “Tensile Bond between Aggregate and Cement Paste or Mortar”, J. Amer. Conc. Inst. Proc., Vol. 60, No. 2, 1963. 89. Yu, V. Zaitsev, “Crack Propagation in a Composite Material”, Fracture Mechanics of Concrete, edited by F. H. Wittmann, 1983. 90. Ollivier, J.P.; Maso, J.C.; Bourdette, B. “Interfacial transition zone in concrete”, Advanced Cement Based Materials, Vol. 2, pp. 30-38, 1995. 91. Prokopski, G.; Halbiniak, J. “Interfacial transition zone in cementitious materials”, Cement and Concrete Research, Vol.30, pp. 579-583, 2000. 92. 蕭旭志,「界面過渡區對混凝土抗含砂水流沖擊性之影響」,碩士論文,國立中興大學土木工程研究所,2005年。 93. Delagrave, A.; Bigas, J.P.; Ollivier, J.P.; Marchand, J.; Pigeon, M. “Influence of the Interfacial Zone on the Chloride Diffusivity of Mortars”, Advanced Cement Based Materials, Vol.5, p. 86-92, 1997. 94. Leemann, Andreas; Loser, Roman; Münch, Beat “Influence of cement type on ITZ porosity and chloride resistance of self-compacting concrete”, Cement and Concrete Composites, Vol. 32, pp. 116-120, 2010. 95. S.P. Pandey, R.L. Sharma, “The influence of mineral additives on the strength and porosity of OPC mortar”, Cement and Concrete Research, Vol. 30, pp. 19-23, 2000. 96. Prinya Chindaprasirt, Chai Jaturapitakkul, Theerawat Sinsiri, “Effect of fly ash fineness on microstructure of blended cement paste”, Construction and Building Materials, 21, pp. 1534-1541, 2007. 97. Linhua Jiang, “The interfacial zone and bond strength between aggregates and cement pastes incorporating high volumes of fly ash”, Cement and Concrete Composites, Vol. 21, pp. 313-316, 1999. 98. Jiang LH, “Studies on hydration, microstructure and mechanism of high volume fly ash concrete”, Ph.D. Thesis, Hohai University, Nanjing, China, 1998. 99. Kwangryul Hwang, Takafumi Noguchi, Fuminiro Tomosawa, “Prediction model of compressive strength development of fly-ash concrete”, Cement and Concrete Research, Vol. 34, pp. 2269-2276, 2004. 100. Yong-Xin Li, Yi-Min Chen, Jiang-Xiong Wei, Xing-Yang He, Hong-Tao Zhang, Wen-Sheng Zhang, “A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste”, Cement and Concrete Research, Vol. 36, pp. 1740-1743, 2006. 101. J.M. Gao, C.X. Qian, H.F. Liu, B. Wang, L. Li, “ITZ microstructure of concrete containing GGBS”, Cement and Concrete Research, Vol. 35, pp. 1299-1304, 2005. 102. X. Fenga, E.J. Garboczia, D.P. Bentza, P.E. Stutzmana, T.O. Masonb, “Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure”, Cement and Concrete Research, Vol. 34, pp. 1787-1793, 2004. 103. ACI Committee 234, “Guide for the Use of Silica Fume in Concrete”, ACI 234R-96, 1996. 104. Masao Kuroda, Tomohide Watanabe, Nariaki Terashi, “Increase of bond strength at interfacial transition zone by the use of fly ash”, Cement and Concrete Research, Vol. 30, pp. 253-258, 2000. 105. Feret, R., Compacité des mortiers hydrauliques, Annales des Ponts et Chaussées, 1984. 106. Popovics. S., “Analysis of concrete strength versus water-cement ratio relationship”, ACI Materials Journal, pp. 517-529, Sep.-Oct., 1990. 107. 黃兆龍,陳建成,江明英,郭金祥,「 拌和水量對混凝土工作性質影響」,中國土木水利學刊,第九卷,第四期,第561~570頁,1997年。 108. 林炳炎,「飛灰與飛灰混凝土」,現代營建,1992年6月。 109. 葉怡成,「預測工程學」,2005年。 110. 邱皓政,「量化研究法(二)統計原理與分析技術」,雙葉書廊有限公司,2005年8月。 111. Dan E. Branson, “Deformation of Concrete Structure”, pp. 2, 1978. 112. 林仁益,「水泥水化參數間基本性質演繹模式之研究」,博士論文,國立台灣工業技術學院,1991年。 113. 潘坤勝,「波索蘭混凝土早齡期強度、波速預測式之建構」,博士論文,國立中興大學土木工程研究所,2004年。 114. De Larrard, F., “Optimization of high performance concrete mixtures in Micromechanics of concrete and cementitious composites”, (ed. C. Huet), Polytehniques et Universities romandes-lausanne, pp. 45-58, 1993. 115. S. Bhanja and B. Sengupta, “Investigations on the compressive strength of silica fume concrete using statistical methods”, Cement and Concrete Research, Vol. 32, pp. 1391-1394, 2002. 116. Wang Dehuai and Chen Zhaoyuan, “On predicting compressive strengths of mortars with ternary blends of cement, GGBFS and fly ash”, Cement and Concrete Research, Vol. 27, No. 4, pp. 487-493, 1997. 117. 葉怡成,「類神經網路模式應用與實作」,儒林圖書有限公司,2001 年4 月七版。 118. 羅華強,「類神經網路-MATLAB 的應用」,清蔚科技,2001年。 119. 陳明澤,「用類神經網路建立以SPT、CPT 及Vs 為主之臨界液化曲線」,碩士論文,私立朝陽科技大學,2002年。 120. Mustafa S_ahmaran, _Ismail O. Yaman, Mustafa Tokyay, “Transport and mechanical properties of self consolidating concrete with high volume fly ash”, Cement and Concrete Composites, Vol. 31, pp. 99-106, 2009. 121. W. Chalee, P. Ausapanit, C. Jaturapitakkul, “Utilization of fly ash concrete in marine environment for long term design life analysis”, Materials and Design, Vol. 31, pp. 1242-1249, 2010. 122. U. Atici, A. Ersoy, “ Evaluation of destruction specific energy of fly ash and slag admixed concrete interlocking paving blocks (CIPB)”, Construction and Building Materials, Vol. 22, pp. 1507-1514, 2008. 123. A. Duran-Herrera, C.A. Juarez, P. Valdez, D.P. Bentz, “Evaluation of sustainable high-volume fly ash concretes”, Cement and Concrete Composites, Vol. 33, pp. 39-45, 2011. 124. K.M. Lee, H.K. Lee, S.H. Lee, G.Y. Kim, “Autogenous shrinkage of concrete containing granulated blast-furnace slag”, Cement and Concrete Research, Vol. 36, pp. 1279-1285, 2006. 125. 張天銘,「添加卜作嵐材料與聚丙烯纖維對水工混凝土磨耗之影響」,碩士論文,國立臺灣海洋大學河海工程學系,2010年。 126. 方銜尉,「爐石粉細度與膠結材組合對混凝土性質影響之研究」,碩士論文,國立臺灣海洋大學河海工程學系,2008年。 127. 陳韋嘉,「添加爐石粉對混凝土抗壓強度及滲透行為之探討」,碩士論文,國立臺灣海洋大學河海工程學系,2006年。 128. 池東堂,「不同砂率對混凝土力學及耐久性之研究」,碩士論文,中華技術學院土木防災工程研究所,2007年。 129. 呂恩賜,「廢觸媒與卜作嵐材料共同取代部分水泥對自充填混凝土工程性質之研究」,碩士論文,國立雲林科技大學營建工程系,2006年。 130. S. Bhanja, B. Sengupta, “Influence of silica fume on the tensile strength of concrete”, Cement and Concrete Research, Vol. 35, pp. 743-747, 2005. 131. C.D. Atis, F. O¨ zcan, A. Kılıc-, O. Karahan, C. Bilim, M.H. Severcan, “Influence of dry and wet curing conditions on compressive strength of silica fume concrete”, Building and Environment, Vol. 40, pp. 1678-1683, 2005. 132. L. Lam, Y. L. Wong, C. S. Poon, “Effect of fly ash and silica fume on compressive and fracture behaviors of concrete”, Cement and Concrete Research, Vol. 28, No. 2, pp. 271-283, 1998.
摘要: 抗壓強度是混凝土品質評估的重要指標,在工程實務應用上,為確保施工安全與經濟性,須於早齡期即能掌握混凝土的強度發展行為。卜作嵐材料因為具有許多優點,已是混凝土中必然添加的掺料,並大量應用於混凝土結構工程上。掺加卜作嵐材料對混凝土早、晚期強度的影響,會隨掺料種類與品質、取代方式、取代量及養護方式之不同而改變;尤其是同時摻入兩種以上之卜作嵐材料後,將使得混凝土強度之預測更為困難。本文主要探討各孔隙參數、ITZ微硬度與混凝土抗壓強度間的關聯性,得到最佳預測參數並據此推導強度預測式,期以建立兼具精準性、簡單性及實用性之卜作嵐混凝土抗壓強度預測式。 本研究之試驗變數包括三種水膠比(0.35、0.50、0.70),單獨添加飛灰10~30%、爐石10~40%及矽灰5~10%,以及同時添加飛灰與爐石20~60%。進行的試驗有抗壓強度、MIP 孔隙檢測及微硬度試驗。由試驗結果與分析發現,單獨添加適量飛灰、爐石、矽灰,對混凝土孔隙結構及晚期強度皆有顯著的改善。其物理填充效應及卜作嵐反應可降低孔隙量並縮小孔隙尺寸分佈;添加矽灰者有最明顯之效應,其於齡期3~7天的孔隙結構大部分為小毛細孔所組成,並形成早強現象。同時添加飛灰及爐石者,自齡期28天起,對混凝土產生的填充效果及卜作嵐效應即趨於明顯;齡期91天時對混凝土強度、孔隙結構及界面過渡區性質等已有顯著的貢獻,使總孔隙量及界面過渡區性能優於純水泥混凝土者。卜作嵐材料取代率20%、30%者其微結構發展較佳,但過大的取代率(如60%)反而不利微結構之發展。經多因子變異數分析後得知,飛灰及爐石對強度的交互作用於齡期1~28天時並不顯著,即爐石、飛灰單獨對強度造成之效果並不受另一掺料添加量而有所改變;但於91天時兩者之交互作用相對較大。卜作嵐混凝土之孔隙結構及界面過渡區均與抗壓強度相關,各參數中又以毛細孔隙含量之關聯性最為密切。本文建議之各卜作嵐混凝土抗壓強度預測式如下: (1)飛灰爐石混凝土整合式:fc=a×ln(W/C)e+b×ln(R)+c×ln(Age)+d×ln(Vc)+e。適用範圍:水膠比0.35~0.70,卜作嵐材料取代10~60%,齡期:1~91天,正常養護。 (2)矽灰混凝土:fc=a×(W/C)e+b×(Age)+c×(Vc)+d,R2=0.964。適用範圍:水膠比0.35~0.70,矽灰取代5~10%,齡期1~91天,正常養護。 經過分析比較後,本文所建立之強度預測式甚佳,其準確度優於其他預測式。另外,本文亦探討利用倒傳遞類神經網路(BPN)來進行各種卜作嵐混凝土之強度預測,結果發現,可將預測的準確度更為提高。
URI: http://hdl.handle.net/11455/16533
其他識別: U0005-2408201103083000
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.