Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16569
標題: 孤立波於斜坡上淺化過程之流場特性探討
Study on the characteristics of internal velocity field induced by a solitary wave propagating over a sloping bottom
作者: 石雅寧
Shih, Ya-Ning
關鍵字: solitary wave
孤立波
PIV
BIV
shoaling
淺化
出版社: 土木工程學系所
引用: 1. 林 呈 (1989):「應用流場可視化法及LDV探討斜坡上波動內部流場及底部邊界層之特性」,國立成功大學水利及海洋工程研究所博士論文。 2. 林 呈、鄭中南、顏光輝、蔡清標 (1996):「層流波動邊界層之速度量測與底部剪應力之評估探討」,中華民國力學期刊,第十二卷, 第二期, 第267- 278頁。 3. 鄭中南 (1996):「波動底部邊界層特性之實驗探討」,國立中興大學土木工程研究所碩士論文。 4. 張淞傑 (2004):「應用流場可視化與PIV技術於孤立波通過淺堤周邊渦流流場之研究」,國立中興大學土木工程研究所碩士論文。 5. 張錦鑲 (2006):「應用流場可視化與PIV系統於孤立波通過對稱穴槽之渦流特性研究」,國立中興大學土木工程研究所碩士論文。 6. 黃彥霖 (2007):「孤立波底部邊界層流場特性之實驗研究」,國立中興大學土木工程研究所碩士論文。 7. 謝世圳 (2008):「建置具高時間解析度之PIV系統並應用於圓柱近域尾流特性之探討」,國立中興大學土木工程研究所博士論文。 8. 余詩敏 (2008):「孤立波底板邊界層之流場特性探討」,國立中興大學土木工程研究所碩士論文。 9. 張裕弦 (2008):「孤立波溯升之研究」,國立成功大學水利及海洋工程研究所博士論文。 10. 何宗浚 (2009):「孤立波通過不同長高比之潛沒構造物時周邊渦流流場特性探討」,國立中興大學土木工程研究所博士論文。 11. 謝世圳、林 呈、余詩敏 (2009):「孤立波底床邊界層之流場特性探討」,第三十一屆海洋工程研討會論文集,第37 ~ 42頁。 12. Cowen, E. A., and Monismith, S. G. (1997). “A Hybrid Digital Particle Tracking Velocimetry Technique.” Experiments in Fluids, 22, 199-211. 13. Cowen, E. A., Sou, I. M., Liu, P. L. F. and Raubenheimer, B. (2003). “Particle Image Velocimetry Measurements within a Laboratory-Generated swash zone.” Journal of Engineering Mechanics, 129, 1119-1129. 14. Daily, J. W., and Stephan, S. C. (1953) “Characteristics of the Solitary Wave.” Transaction of ASCE, 118. 15. Huang, C. J., and Dong, C. M. (2001). “The Interaction of a Solitary Wave and a Submerged Dike.” Coastal Engineering, 43, 265-286. 16. Heller, V., Unger, J., and Hager, W. (2005). “Tsunami Run Up—A Hydraulic Perspective.” Journal of Hydraulic Engineering, ASCE, 743-747. 17. Hsiao, S. C., Hsu, T. W., Lin, T. C., and Chang, Y. H., “On the Evolution and Run-Up of Breaking Solitary Waves on a Mild Sloping Beach” Coastal Engineering, 55(12), 975–988. 18. Ippen, A. T., and Mitchell, M. M. (1957). “The Damping of the Solitary Wave from Boundary Shear Measurements.” Hydrodynamics Laboratory, Massachusetts Institute of Technology, 23. 19. Jensen, B.L., Sumer, B. M., and Fredsoe, J. (1989). “Turbulent Oscillatory Boundary Layers at High Reynolds Numbers.” Journal of Fluid Mechanics, 206, 265-297. 20. Keulegan, G. H. (1948). “Gradual Damping of Solitary Wave.” Journal Research of National Bureau Standard, 40, 607-614. 21. Liu, P. L. F., Al-Banna, K. A., Cowen, E. A. (2004). “Water Wave Induced Boundary Layer Flows above a Rippled Bed.” Advances in Coastal and Ocean Engineering: PIV and Water Waves, 9, 81-117. 22. Liu, P. L. F., and Orfila, A. (2004). “Viscous Effects on Transient Long-Wave Propagation.” Journal of Fluid Mechanics, 520, 83-92. 23. Lin, C., Ho, T. C., Chang, S. C., Hsieh, S. C., and Chang, K. A. (2005). “Vortex Shedding Induced by a Solitary Wave Propagating over a Submerged Vertical Plate.” International Journal of Heat and Fluid Flow, 26, 894-904. 24. Liu, P. L. F., Simarro, G., Van Dever, J., and Orfila, A. (2006). “Experimental and Numerical Investigation of Viscous Effects on Solitary Wave Propagation in a Wave Tank.” Coastal Engineers, 53(2/3), 181-190. 25. Liu, P. L. F., Park, Y. S., and Cowen, E. A. (2007). “Boundary Layer Flow and Bed Shear Stress under a Solitary Wave.” Journal of Fluid Mechanics, 574, 449-463. 26. Mei, C. C. (1983). “The Applied Dynamics of Ocean Surface Waves.” John Wiley & Sons. 27. Mori, N and Chang, K. A. (2003). “Introduction to MPIV,” PIV Toolbox in MATLAB, version 0.95, pp.1-13 28. Ott, E., and Sudan, R. N. (1970). “Damping of Solitary Waves.” Physics Fluids, 13, 1432. 29. Tanaka, H., Sumer, B. M., and Lodahl, C. (1998). “Theoretical and Experimental Investigation on Laminar Boundary Layers under Cnoidal Wave Motion.” Coastal Engineering, 40, 81-98.
摘要: The purpose of this study is to investigate the characteristics of internal velocity field induced by a solitary wave propagating on 1:10 sloping bottom using the flow visualization technique and time-resolved particle image velocimetry (PIV). The characteristics of flow fields induced by solitary waves with different wave-height (H0) and water-depth (h0) conditions are discussed. (1) The maximum horizontal velocity (umax-up) along the x direction to the vicinity of the breaking point increases gradually after the rapid decay of the resulting situation. Therefore, the study used the maximum horizontal velocity (uhmax) of horizontal bottom bed as velocity scale and employed the water depth (h0) of horizontal bottom bed as length scale. The study has shown the similarity results of maximum horizontal velocity distribution in different solitary wave conditions over a sloping bottom. (2) Run-down flow propagates to offshore direction over a sloping bottom. In order to investigate the characteristics of maximum adverse velocity distribution in run-down process, the study applied the location of shore line as the basis reference and shifted the horizontal reference position to obtain the similarity of maximum adverse velocity.
本研究主要應用流場可視化及具高時間解析之PIV速度量測系統,針對不同波高水深比條件下之孤立波於1:10斜坡上淺化過程中之流場進行實驗量測,以探討孤立波於斜坡上淺化過程中流場之水平速度變化特性。 由實驗量測結果可知不同條件下孤立波於斜坡上淺化過程中之最大水平速度沿x方向至碎波點附近均有逐漸增大而後即產生急速衰減之情形。因此,若以孤立波於入射斜坡前水平底床上之最大水平速度uhmax作為特徵速度、h0(斜坡前等水深)為特徵長度,則可獲得不同波浪條件下於斜坡上最大水平速度分佈之相似性結果。此相似性結果以x/h0 = 8.9為界可分為加速區及衰減區兩部分。 溯降水流是由斜坡上向離岸方向傳遞,故本文於溯降過程之最大逆向速度分佈特性探討時,特採汀線為參考原點,並轉換水平方向以推求最大逆向速度相似性特性。
URI: http://hdl.handle.net/11455/16569
其他識別: U0005-2608201106132200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2608201106132200
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.