Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16574
標題: 利用預氧化碳電極誘發葡萄糖氧化酵素之 直接電子傳導效應於感測器與燃料電池之研究
Characterization and application of direct electron transfer of glucose oxidase at preanodized carbon electrodes
作者: 洪啟倫
Hung, Chi-Lun
關鍵字: direct electron transfer
直接電子傳導
fuel cell
glucose oxidase
燃料電池
葡萄糖氧化酵素
出版社: 化學系所
引用: 1. Wu, J.; Qu, Y. Anal. Bioanal. Chem. 2006, 385, 1330-1335. 2. Berezin, I. V.; Varfolomeev, S. D. Appl. Biochem.Bioeng. 1978, 2, 259-290. 3. Tarasevich, M. R.; Yaropolov, A. I. Bioelectrochem. Bioenergetics 1979, 6, 393-403. 4. Wang, L.; Yuan, Z. Sensors 2003, 3, 544-554. 5. Varfolomeev, S. D.; Kurochkin, I. N. Biosen. Bioelectron. 1994, 9, 353-357. 6. Luo, X. L.; Killard, A. J.; Smyth, M. R. Electroanal. 2006, 11, 1131-1134 7. Chen, T.; Binyamin, G.; Heller, A. Anal. Sci. 2001, 17, supplement. 8. Willner, I.; Katz, E.; Patolsky, F.; Buckmann, A. F. J. Chem. Soc. 1998b, 8, 1817–1822. 9. Katz, E.; Willner, I.; Kotlyar, A. B. J. Electroanal. Chem. 1999c, 1, 64–68. 10. Pizzariello, A.; Stred’ansky, M.; Miertus, S. Bioelectrochem. 2002, 56, 99–105. 11. 連加雯 國立中興大學碩士學位論文 2006 12. http://www.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/pdb77_1.html 13. http://en.wikipedia.org/wiki/FAD 14. Cai, C. X.; Chen J. Anal. Biochem. 2004, 332, 75–83. 15. Liu, A. H.; Wei, M. D.; Honma, I.; Zhou, H. S. Anal. Chem. 2005 77 8068-8074. 16. Dong, S. J.; Li J. H. Bioelectrochem. bioenergetics 1997, 42, 7-13. 17. Lei, C. H.; Wollenberger, U.; Bistolas N. Anal. Bioanal. Chem. 2002, 372, 235–239. 18. Wang, J. X.; Li, M. X.; Shi, Z. J.; Li, N. Q.; Gu, Z. N. Anal. Chem. 2002, 74, 1993-1997. 19. Cai, C. X.; Chen J. Anal. Biochem. 2004, 325, 285–292. 20. Savitri, D.; Mitra, C. K. Bioelectrochem. Bioenergetic 1998, 47, 67-73. 21. Guiseppi, E. A.; Lei, C. H.; Baughman, R. H. Nanotechnology 2002, 13, 559–564. 22. Liu, Y.; Wang, M. K.; Zhao, F.; Xu, Z.; Dong S. J. Biosen. Bioelectron. 2005, 21, 984–988. 23. Allen, R.M.; Bennetto, H.P. Appl. Biochem. Biotechnol. 1993, 39, 27–40. 24. Park, D.H.; Zeikus, J.G. Appl. Environ. Microbiol. 2000, 4, 1292–1297. 25. Schroder, U.; Niessen, J.; Scholz, F. Angew. Chem. Int. Ed. 2003, 25, 2880–2883. 26. Tsujimura, S.; Kano, K.; Ikeda, T. Electrochem. 2002, 12, 940–942. 27. Katz, E.; Willner, I. J. Am. Chem. Soc. 2003, 22, 6803–6813. 28. Kawashima, Y.; Katagiri, G. Phys. Rev. B. 1995 52, 53-59. 29. Banks, C. E.; Compton, R. G. Anal. Sci. 2005 21, 1263-1270. 30. Belin, T.; Epron, F. Mater. Sci. Eng. 2005, 119, 105-118. 31. Lipkowski, J.; Ross, P. N. Electrochem. Novel Mater. Wiley, New York, 1994. 32. Bard A. J.; Faulkner L. R. Electrochem. Methods. Wiley, New York, 1980. 33. Alvarez, L. M.; Kalisz, H. M.; Hecht, H. j.; Aumann, K. D.; Schomburg, D.; Schmid, R. D. Biosen. Bioelectron. 1995, 10, 735-742. 34. Ohara T. J. platinum metals rev. 1995, 39, 54-62. 35. AdrianW. Bott, Ph.D.; Current Separations 21:1 2004 36. Stetten, F. Von; Kerzenmacher, S.; Lorenz, A.; Chokkalingam, V.; Miyakawa, N.; Zengerle, R.; Ducrée, J. MEMS 2006,Istanbul, Turkey, 22-26 January 2006 37. Chen, T.; Barton, S.; Gao, Z.; Zhang, Y.; Kim, H.; Heller, A. J. Am. Chem. Soc. 2001, 23,8630-8631 38. Gorton, L.; Lindgren, A.; Larsson, T.; Munteanu, F. D.; Ruzgas, T.; Gazaryan I. Anal. Chim. Acta 1999, 400, 91–108.
摘要: 本篇論文中提出預氧化網版印刷碳電極(SPCE*)的獨特性質可誘發葡萄糖氧化酵素的直接電子傳導行為。將葡萄糖氧化酵素固定在電極上,藉由預氧化所產生在碳上的氧化官能基,來與酵素之間產生直接的聯繫作用,可由電化學訊號來確認直接電子傳導行為的存在。試驗中葡萄糖氧化酵素可以方便且牢固的固定在預氧化網版印刷碳電極上,並且仍然具有其活性反應行為。葡萄糖氧化酵素的直接電子傳導現象更可被利用在分析與能源方面,在分析上可以利用直接電子傳導的低電位特性與酵素的專一性來進行偵測;在能源方面可以運用在生物葡萄糖燃料電池的陽極端來使用。本研究利用簡單快速的步驟就能使SPCE具有類似奈米碳管的性質,並能獲得直接電子傳導的效應且成本低廉、製作快速簡便、方便大量生產。不只在分析上有不錯的靈敏度及抗干擾能力,在能源應用方面,用於葡萄糖燃料電池也有不錯的表現,開路電壓約0.6 V,最大功率密度約在150 μW/cm2。
We present here a unique property of preanodized screen printed electrodes (SPCE*) that can drive direct electron transfer of glucose oxidase. When the enzyme is immobilized on the SPCE*, the enzyme is directly connected to the electrode by the oxidized functional groups which are generated by preanodization. The direct electron transfer of glucose oxidase can be applied in electroanalysis as well as energy generation. In electroanalysis, the advantage comes from the high selectivity of enzyme and the low detection potential of DET. In glucose biofuel cell application the DET of GOD in fabricating of electrode can work efficiently as anode in sugar/air battery. The application of DET of GOD is very convenient and the fabrication of electrode is cheap, it gets good sensitivity in electroanalysis and high performance in power generation. The biofuel cell generates an OCP of 0.6 V and a max. power density of ~ 150 μW/cm2.
URI: http://hdl.handle.net/11455/16574
其他識別: U0005-0608200711030500
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.