Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1659
標題: 尤拉公式數值離散之先天困境分析
Inherent Numerical Discretization Dilemma Analysis of Euler Equation
作者: 遲毓熙
Chih, Yu-Hsi
關鍵字: Euler equation
尤拉方程式
出版社: 機械工程學系所
引用: [1] Truesdell, C., “History of Classical Mechanics”, Part I, Naturwissenschaften 63, 5119-130, 1976. [2] Lee, H. J. and Huang, S. C., “On the Derivation Process of Reynolds Transport equation”, The International Journal of Mechanical Engineering Education, Vol. 21, No. 1, 1993, pp. 49-53. [3] Chiang, J. S., Chuang, S. H. and Lee, H. J., “Unveiling the Crucial Role of Impact Energy Loss for So-called Incompressible Fluid Flow”, Journal of Marine Science and Technology Vol. 12, No. 1, 2004, pp.45-52. [4] Lee, H. J. and Chiang, J. S., “The Life and Death of Euler, Bernoulli, Navier-Stokes Equation and Associated CFD for So-called Incompressible Fluid Flow”, 2003, Research Report MEDL-03-0725, Dynamics Lab., Dept. of Mech. Engineering, National Chung-Hsing University. [5] 江俊顯,“揭開衝擊能損對不可壓縮流場之重大效應”,國立中興大學機械工程研究所博士論文,2004。 [6] Munson, B. R., Young, D. F. and Okiishi, T. H., Fundamentals of Fluid Mechanics, (1998), 3nd ed., John Wiley, New York, 1988, pp.15-25, pp.352-355, pp.496-505, p.501 and pp.586-587. [7] 鄭自強,“系統動力學動量公式推導過程之探討”,國立中興大學機械工程研究所碩士論文,2004。 [8] Frank, M. W., Fluid Mechanics, 4th ed., (1995), McGraw-Hill, New York. [9] Roberson, J. A. and Crowe, C. T., Engineering Fluid Mechanics, 5th ed., (1993), Moughton Mifflin Co., Boston. [10] 柏實義,基本空氣動力學,國立編譯館,1975,pp.31-33. [11] Munson, B. R., Young, D. F. and Okiishi, T. H., Fundamentals of Fluid Mechanics, (1998), 3nd ed., John Wiley, New York, pp.501 and pp.586-587. [12] Birkhoff, G., Hydrodynamics - a Study in Logic, Fact and Similitude, (1960), Princeton University Press, pp.4-5. [13] Mott, R. L., Applied Fluid Mechanics, Prentice-Hall, London, 2000. [14] Lee, H. J., Chang, M. Y. and Chan, J. M., A Forbidden Zone of No-energy-loss Assumption: the Rope-lifting Problem, The Fifteenth National Conference on Theoretical and Applied Mechanics, (1991), Taiwan. [15] Roberson, J. A., and Crowe, C. T., and Elger, D. F.,Engineering Fluid Mechanics, 7 th ed., (1980), John Wiley, New York, pp.25-39 and pp.79-109. [16] John D. Anderson, Jr., Modern Compressible Flow With Historical Perspective, 2nd ed., McGraw-Hill, New York, 1990. [17] 楊承桓,“划槳與搖櫓之推進力學”,國立中興大學機械工程研究所碩士論文,2005。 [18] Moran, Michael J. and Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 4th ed., John Wiley, New York, 2000, pp.1-27 and pp.142-187. [19] 賴紹榮,周更生,熱力學的發展簡史,科學發展月刊,行政院國家科學委員會,2004年5月,pp.6-15. [20] Caughey, D. A. and Hafez, M. M., Frontiers of Computational Fluid Dynamics 1998, (1998), World Scientific, Singapore, pp.172. [21] Habashi, W. G. and Hafez, M. M., Computational Fluid Dynamics Techniques, (1995), Gordon and Breach Publishers, SA, pp.367. [22] Jiang, B.-N., The Least-Squares Finite Element Method,(1998), Springer-Verlag, Heidelberg. [23] Donea, J. and Huerta, A., Finite Element Methods for Flow Problems, (2003), John Wiley, pp.50, pp.60 and pp.52. [24] Reddy, J. N and Huerta, An Introduction to The Finite Element Method, 2nd ed., (1993), McGraw-Hill, Singapore, pp.51.
摘要: 尤拉方程式自西元1755年推導出來後,兩百多年來一直是流體動力學的基本核心公式,對不可壓、非黏流而言,此一公式乍看似乎相當簡單,但數值計算時卻會產生嚴重的存在、唯一、穩定與振盪等問題。以擴管流為例,尤拉公式在推導過程不經意令壁壓等於當地之流向壓力,此舉相當於暗中作出無衝擊能損的假設,已導致理論與實驗的嚴重誤差;而在數值離散時,已經不出現在尤拉公式中的壁壓 ,卻陰魂不散地繼續進一步造成嚴重的存在、唯一、穩定及振盪問題,甚而違反基本能量原理。雖然有限元素法結合餘式配重法在處理固體力學相關之偏微分方程時,表現出強而有力的態勢,可是當用於流體力學問題時,卻造成CFD學界極大的困難,因此近幾十年來計算流體力學學者常設計各種各樣求解不可壓流的專案補救之處理手法,諸如流線上風法、人工黏滯、人工壓縮、交錯格點、非等階元素.....等,以期跳脫數值解的困境,但這些權宜手段究竟並非正本清源之道,反而常造成治絲益棼的窘境。故本文為追根究柢,乃參照回歸自然的李-江尤拉公式,對照極簡的伯努利因式分解,從基本的系統動量及能量觀念,重新詳細檢視推導尤拉方程式的原始過程,以徹底解析尤拉公式在數值離散時造成嚴重困境之真正先天性原因。
Euler equations derived in 1755 are among the most important equations for general fluid analysis. Although this fundamental governing equation looks simple at first glance for incompressible, inviscid fluid flow, it does lead to serious numerical discretization dilemma related to existence, uniqueness, stability and oscillation problems. Take gradual pipe expansion flow for instance, in the process of deriving Euler equation, the intrinsic negligence of impact energy loss by seemingly innocent artificial equalization of crosswise and streamwise fluid pressure will lead to serious error compared with experimental data. Moreover, the already disappeared wall pressure from Euler equation will further ghostly bring about crucial existence, uniqueness, stability and oscillation problems, and even violate fundamental energy principle. Although finite element method together with method of weighted residuals constitute a powerful tool to solve PDE in solid mechanics, while solving PDE in CFD, it turns out to be much difficult. To escape from this dilemma, various kinds of ad hoc treatments such as streamline upwinding, artificial viscosity, artificial compressibility, staggered grid, non-equal-order elements and so on are devised awkwardly in an attempt to somehow manipulate some energy dissipation when dealing with incompressible fluid flow. Nevertheless, these make-shift compensating measures are not really solving problem from the root up, and also result to a rather contaminated flow field. In this research, for the sake of finding the true culprit, we refer the back-to-nature Lee-Chiang Euler equation, basic momentum and energy concepts, and the extremely concise Bernoulli equation factorization to re-scrutinize the original deriving process of Euler equation, in order to find the inherent true pathology leading to these serious numerical discretization dilemma of Euler equation.
URI: http://hdl.handle.net/11455/1659
其他識別: U0005-2107200612345900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107200612345900
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.