Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16599
DC FieldValueLanguage
dc.contributor陳文福zh_TW
dc.contributorWen-Fu Chenen_US
dc.contributor陳正炎zh_TW
dc.contributor莊甲子zh_TW
dc.contributor林朝福zh_TW
dc.contributorJen-Yan Chenen_US
dc.contributorJea-Tzyy Juangen_US
dc.contributorChao-Fu Linen_US
dc.contributor.advisor蔡清標zh_TW
dc.contributor.advisorChing-Piao Tsaien_US
dc.contributor.author黃清和zh_TW
dc.contributor.authorHwang, Ching-Heren_US
dc.contributor.other中興大學zh_TW
dc.date2013zh_TW
dc.date.accessioned2014-06-06T06:55:41Z-
dc.date.available2014-06-06T06:55:41Z-
dc.identifierU0005-3001201210004700zh_TW
dc.identifier.citation[01]汪中和 (1998)「國際海洋年報報導系列談聖嬰現象」,中央研究院週報,第667期。 [02]徐泊樺、顏志偉 (2007)「淺談我國海洋能源之開發前量」,物理雙月刊,Vol. 29, No. 3, pp.718-726. [03]黃奕璋 (2007)「極端降雨事件分散式集水區逕流模式之發展與驗證」,國立中央大學水文科學研究所碩士論文。 [04]楊承道 (2008)「氣候變遷對西北太平洋熱帶氣旋的影響」,國立中央大學大氣物理研究所碩士論文。 [05]藍嘉偉 (2006)「利用HHT之EMD方法分析SSM/I資料估算之客觀指數與颱風強度年際變化關係」,國立中央大學大氣物理研究所碩士論文。 [06]Alves, G.M.J.H., and Banner, M.L. (2003)“Impact of a saturation-dependent dissipation source function on operational hindcasts of wind-waves in the Australian region,” Atmosphere and Ocean system, Vol. 8 ,No. 4, pp.239-267. [07]Alves,G.M.J.H., and Banner, M.L. (2003)“Performance of a saturation-based dissipation source term for wind wave spectral modelling,”Journal of Physical Oceanography,Vol. 33, pp.1274-1298. [08]Bacon, S. and Carter, D.J.T. (1991) “Wave climate change in the North Atlantic and North Sea,” International Journal of Climatology, Vol. 11, pp.545-588. [09]Bacon, S. and Carter, D.J.T. (1993) “A connection between mean wave height and atmospheric pressure gradient in the North Atlantic,” International Journal of Climatology, Vol. 13, pp.423-436. [10]Banner, M.L., Babanin, A.V., and Young, I.R. (2000)“Breaking probability for dominant waves on the sea surface,”Journal of Physical Oceanography, Vol. 30, pp.3145–3160. [11]Banner, M.L., Gemmrich, J.R., and Farmer, D.M. (2002)“Mutiscale measurements of ocean wave breaking probability,”Journal Physical Oceanography, Vol. 32, pp.3264–3275. [12]Boiij, N. , Ris, R.C., and Holthuijsen, L.H. (1999)“A third-generation wave model for coastal regions,”Part 1, Model description and validation, Journal of Geophysical Research, 104 C4, pp.7649-7666. [13]Calverley, M.J., Szabo, D., Cardone, V.J., Orelup, E.A. and Parsons, M.J. (2005) “Wave climate study of the Caribbean Sea,” Unpublished manuscript from Ocean Weather Company. [14]Cardone, V.J., Greenwood, J.G. and Cane, M.A. (1990) “On trends in historical marine wind data,” Journal of Climate, Vol. 3, pp.113-127. [15]Carter, D.J.T. and Draper, L. (1988) “Has the Noreast Atlantic become rougher,” Nature, Vol. 332, pp.494-509. [16]Chiou, M.D., Winter, C., Kao, C.C. (2007)“Storm surge hindcast in the North Sea,” The 9th Asian Symposium on Visualization, Hong Kong, June 4-8. [17]Cotton, P.D., Carter, D.J.T. (1994)“Cross calibration of Topex. ERS-1 and Geosat wave heights,”Journal Geophys Research, 99, pp.25025-25033. [18]Donelan, M.A. (1996)“Air–water exchange processes,”Physical Processes in Lakes and Oceans, J. Imberger, Ed., Coastal and Estuarine Studies, Vol. 54, Amer. Geophys. Union, pp.19–36. [19]Donelan, M.A. and Pierson, W.J. (1987)“Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry,”Journal Geophys Research, 92(C5), pp.4971-5029. [20]Emanual, K. (2005) “Increasing destructiveness of tropical cyclones over the past 30 years,” Nature, Vol. 326, pp.686-688. [21]Glantz, M.H. (2001)“Current of change : Impacts of El Nino on climant and society,” 2nd edition, Cambridge University Press, Cambridge, UK 25599. [22]Gulev, S.K. and Hasse, L. (1999) “Changes of wind waves in the North Atlantic over the last 30 years,” International Journal of Climatology, Vol. 19, pp.1091-1117. [23]Hasselmann, K., Barnett, T.P., Bouws, H., Carlson, H., Cartright, D.E., Enke, K., Ewing, J.A., Gineapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H. ( 1973)“Measurements of wind wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) ,”Dtsch. Hydrogr. Z., Suppl. [24]Holthuijsen, L.H., and Herbers, T.H.C. (1986)“Statistics of breaking waves observed as whitecaps in the open sea,”Journal Physical Oceanography, Vol. 16, pp.290–297. [25]Hogben N., and Tucker, M.J. (1994)“Sea-state development during severe storms: Assessment of data and case histories,”Underwater Technology, 20, pp.23–31. [26]Houghton, J.T., Jenkins, G.J. and Ephramus Eds., J.J. (1990) “Climate change,” The IPCC Scientific Assessment Cambridge University Press, pp.365-375. [27]Houghton, J.T. (1996)“Climate change 1995: The science of climate change,” published by the University of Cambridge, UK. [28]Janssen, P.A.E.M. (1989)“Wave induced stress and the drag of air flow over sea waves,”Journal Physical Oceanography, Vol. 19, pp.745-754. [29]Janssen, P.A.E.M. (1991)“Quasi-linear theory of wind-wave generation applied to wave forecasting,”Journal Physical Oceanography, Vol. 21, pp.1631-1642. [30]Kamphuis, J.W. (1991) “Alongshore sediment transport rate,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 117, No. 6, pp.624-640. [31]Komen, G.J., Hasselmann, K., and Hasselmann, S. (1984)“On the existence of a fully developed wind sea spectrum,”Journal Physical Oceanography, Vol. 14, pp.1271-1285. [32]Kossin, J.P., Knapp, K.R., Vimont, D.J., Murnane, R.J. and Harper, B.A. (2007)“A global consistent reanalysis of hurricane variability and trends,”Geophysical Research Letters, Vol. 34, L04815. [33]Kushnir, Y. (1994)“Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions,”Journal of Climate, 7, pp.142–157. [34]McPhaden, M.J. and Picaut , J.M. (1990)“ El Nino-Southern oscillation displacements of the western equatiorial Pacific Warm Pool,”Science, 25, pp.1385-1388. [35]McPhaden, M. J. (1999)“Genesis and evolution of the 1997– 98 El Nino,”Science, 283, pp.950–954. [36]Monahan , E.C. , Spiel , D.E. and Davidson , K.L. (1986)“ A model of marine aerosol generation via whitecaps and wave distruption,”In Oceanic Whitecaps. [37]Phillips, O.M. (1984)“On the response of short ocean wave components at a fixed wavenumber to ocean current variations,”Journal Physical Oceanography,14, pp.1425-1433. [38]Phillips, O.M. (1985)“Spectral and statistical properties of the equilibrium range in wind-generated gravity waves,”Journal of Fluid Mechanics,156, pp.505-531. [39]Rapp, R.J., and Melville, W.K. (1990)“Laboratory measurements of deep-water breaking waves,”Philos. Trans. Roy. Soc. London, A331, pp.735–800. [40]Schiefer, E. (2006)“Contemporary sedimentation rates and depositional structure in a Montane Lake Basin, southern coast mountains, British Columbia, Canada,”Earth Surface Processes and Landforms, Vol. 31(10), pp.1311-1324. [41]Smith, E.R., Ebersole, B.A. and Wang, P. (2004) “Dependence of total alongshore sediment transportation rates in incident wave parameters and breaking type,” Report of ERDC/CHL CHETN-IV_62 of US Army Crops of Engineers. [42]Snyder, R.L., Dobson, F.W., Elliot ,J.A. and Long R.B. (1981)“Array measurements of atmosohric pressure fluctuations above surface gravity waves,”Journal of Fluid Mechanics,102, pp.1-59. [43]Swail, V.R, Ceccacci, E.A, and Cox, A.T. (2000)“The AES40 North Atlantic wave reanalysis : validation and climate assessment,”6th International Workshop On Wave Hindcasting and Forecasting. [44]Trenberth, K.E., and Hurrel, J.W. (1994)“Decadal atmosphere-ocean variations in the Pacific,”Climate Dynamics,9, pp.303-319. [45]Tolman, H.L. and Chalikov, D. (1996)“Source terms in a third-generation wind wave model,”Journal Physical Oceanography, Vol. 26, pp.2497–2518. [46]Wang, X. and Swail, V.R. (2006)“Climate Change signal and Uncertainty in Projections of Ocean Wave Heights,”Climate Dynamics, Vol. 26(2-3), pp.109-126. [47]Webster, P.J., Holland, G.J. and Chang, H.R. (2005) “Changes in tropical cyclone number, duration, and intensity in a warming environment,” Science,Vol. 309, No. 5742, pp.1844-1846. [48]Wu, L., Wang, B. and Geng, S. (2005) “Growing typhoon influence on East Asia,” Geophysical Research Letters, Vol. 32, No. 18, L18703. [49]Yasunaka, S., and Hanawa, K. (2002)“Regime shifts found in the Northern Hemisphere SST field,”Journal Meteorological Society, Japan, 80, pp.119-135. [50]Zhao, Z.D., Lian, J.J. and Shi, J.Z. (2006) “Interactions among waves, current and mud: numereical and laboratory studies,” Advances in Water Resources,Vol. 29, Issue 11, pp.1731-1744.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16599-
dc.description.abstract近十年來太平洋暖池 (Warm pool)強度增加,導致平均海水表面溫度(Sea Surface Temperature, SST)增溫,根據研究指出(Emanuel, 2001, 2004, 2006),海水表面增溫將直接造成熱帶氣旋(颱風)最大潛在強度(Maximum Potential Intensity, MPI)增強。台灣位於西太平洋颱風主要路徑上,必將直接面臨強度遽增颱風造成的極端波浪狀況。目前太平洋海水增溫的機制尚未有學術上的定論,有可能肇因於全球暖化的結果。若太平洋海水增溫現象持續,則迅速增多的極端事件將有可能改變台灣海域長期波候特性:颱風波浪的能量及高度的尖銳度將導致目前依賴各種海岸工法得以維持侵淤平衡的砂質海岸,因平衡條件的改變將使岸線迅速崩潰。 本研究應用波浪數值推算SWAN(Simulation of Wave in Nearshore)模式,以美國國家環境預報中心 (National Center for Environmental Prediction, NCEP)所提供1948-2008年全球歷史表面10公尺風速分析場,推算近60年來海面歷史波場,重建西北太平洋與台灣海域之波浪資料,所建置之波浪數值模式,經由2004年冬夏兩季台灣週邊海域實測花蓮、龍洞、七股及鵝鑾鼻等四測站資料的校驗,獲得最佳之源函數與模擬參數設定,並應用此參數進行推算,模式結果與觀測之示性波高均方根誤差小於0.5公尺。重建的波浪資料經與實測資料比對後確認其正確性後,分別應用於探討台灣海域波候變遷趨勢,就(1)波候於時間上之變異、(2)大波極端事件統計分析、(3)波候變遷對台灣海域海事工程可工作日的變化趨勢影響以及(4)波候變遷對海岸侵淤及波浪特性之影響等問題進行研究。研究結果發現:波候於時間上之變異,顯示台灣海域的波候存在有三種主要週期的震盪,包括季節性的變動,年際變動與十年際震盪,且波能年際震盪與聖嬰、反聖嬰現象具有高度相關,震盪的發生與南方震盪指標(Southern Oscillation Index,SOI)間不具有相位延遲;以往受限於波浪觀測歷史資料長度,此現象於波能發電潛勢評估中未曾被注意,惟分析結果顯示年平均波能在聖嬰年與反聖嬰年之差異可達一倍,故此波浪震盪影響應納入工程評估,不可忽略。 其次,本研究探討台灣海域各種大波極端事件發生機率,結果發現近60年來極端事件集中發生於1967至1974年以及2000至2008年間,其中後者所發生的極端事件波高大、延時長,且台灣海域所發生的極端大波事件中,冬季的極端大波事件有減少趨勢,夏季的極端大波事件有增加的趨勢,其中夏季發生之大波極端事件完全由颱風所造成,若以1985年為界,之後颱風所造成極端事件的比例,較東北季風為高,且逐年增加。此結果暗示全球暖化已對台灣海域颱風強度帶來本質上的影響,但總體的極端事件發生次數尚未有顯著的改變,而研究成果進一步顯示,台灣地區波候具有統計上顯著變化趨勢,即1981~1982年受強烈聖嬰現象影響,年均波高變小;隨後於1983年底即又回復正常。 此外,本研究利用此60年長期波浪資料為基礎,進一步探討台灣海域可工作日分析變化,並討論各種常用的統計分布模式應用於金門海域極端事件發生機率估算之比對。結果發現,甘保分布擬合程度較常用之韋伯分布為佳,但在極端大值上過於保守,本研究顯示廣義極值分布最能貼切描述金門海域的波浪統計特性。另一方面,有關波候變遷對海岸侵淤及波浪特性之影響等問題,本研究以台灣東北角海域福隆海岸為對象,進行海岸沉積物向離岸輸送通量的估計探討。研究結果顯示,該海岸除了受季節的因素影響以外,在1998年(聖嬰年)及2001年(反聖嬰年)的灘線變化,其灘線的差異達約40公尺。且自2003年初開始至目前,波浪尖銳度在三年內增加幅度達30%,單位面積波浪能量增加達2.5倍,波浪方向(來向)逐漸偏北轉移,達到10度,這些現象在持續發生中,此結果表示台灣周遭海岸侵淤及沿岸漂沙特性即將可能產生劇烈變化。zh_TW
dc.description.abstractRecent reports by Emanuel (Emanuel 2001, 2004 and 2006) demonstrated the linear dependency of the increase of typhoon maximum potential intensity to the sea surface temperature. With the intensified warm pool activities in the northern Pacific from 2000, it is expected that the typhoon strength will be intensified. Taiwan, which located in the midway of the most populated trajectories of typhoons in the world, will be suffered from the direct impacts that brought by the extreme conditions. There are not yet conclusive theories explaining the increase of sea surface temperature in the Northern Pacific. The typhoon intensifications might be inter-annual oscillated or by global warming effects. Both will incur the wave climate change in the coastal region of Taiwan. The coastlines of Taiwan Island are currently protected and preserved by artificially means. Rapid erosions might be triggered by the collapse of temporally balance. With the wind speed analysis data of global historical surface 10-meter wave in the period of 1948-2008 provided by the National Center for Atmospheric Research and National Center for Environmental Prediction (NCAR/NCEP), this study applied the SWAN wave model in estimating the sea surface historical wave fields in recent 60 years to reconstruct the wave data of the Northwest Pacific and Taiwan's surrounding waters. The reconstructed wave data model was calibrated and tested by the actual measurement data measured in summer and winter of 2004 in four stations in Taiwan's surrounding waters to obtain the optimal source function and simulation parameter settings. The root mean square error between the simulation results by estimation using the parameters and the observed significant wave heights is smaller than 0.5 m. After confirming the accuracy of reconstructed wave data by comparison with the actual observation data, the reconstructed wave data were applied in the discussion of the wave climate changing trend, including (1) wave climate in the variation of time , (2) the statistical analysis of various big wave extreme events, (3) changes of Taiwan's surrounding waters in working days as well as (4) changes in coastal erosion and wave characteristic questions ets.,respectively. The results indicated that there is a rising trend of big wave extreme events in Taiwan's surrounding waters after 2000. In addition, before 1987, most big wave extreme events occurred in winter due to the impact of northeastern monsoon. However, the proportion of such events affected by typhoon has been relatively higher after 1987, indicating the impact of climate changes. Meanwhile, the wave climate of Taiwan's surrounding waters has three major cycles of shocks including seasonal shocks, annual shocks, and decadal shocks. Moreover, the annual wave energy fluctuations are highly related to El Niño and La Niña phenomena. The occurrence of shocks and SOI index has no phase delay. Due to limitations of wave observation historical data length, this phenomenon has not been considered in assessing wave energy power generation potentials. The analysis results suggested that the average annual wave energy may differ by 100% in years of El Niño or La Niña. Hence, the impact of wave shocks should be taken into consideration in engineering assessment rather than being neglected. The research findings suggested that Taiwan's wave climate has a significantly changing trend at two time periods. In the first period of 1981~1982, due to strong impact of the El Niño phenomenon, the average annual wave height tended to decline and returned to normal at the end of 1983. On the other hand, in the period starting from the beginning of 2003 to the present day, the wave steepness increased by 30% in three years and the unit area wave energy increased by 2.5 times, the wave direction gradually turned northward up to 10 degree. Such phenomena have been continuously happening, indicating the upcoming dramatic change in coastal erosion and coastal drifting sand. Secondly, this study explored the occurrence probability of various big wave extreme events in Taiwan's surrounding waters. The findings suggested that extreme events in recent 60 years occurred mainly in the period from 1967 to 1974 and the period from 2000 to 2008. In case of extreme events in the later period, the wave height was high and lasted for long time. There is a trend of decreasing extreme events occurring in winter in Taiwan's surrounding waters and a rising trend of summer extreme big wave events. The big wave extreme events in summer are completely caused by typhoon. With 1985 as the division line, the proportion of extreme events caused by typhoon is higher than the proportion of such events caused by northeaster monsoon, and the proportion has been increasing. This implies that global warming has a fundamental impact on the strength of typhoons in Taiwan's surrounding waters. Nevertheless, the number of extreme events has not changed significantly. Finally, based on the long term wave data of recent 60 years, this study further analyzed changes of Taiwan's surrounding waters in working days, and discussed the application of various common statistical distribution models in the comparison of estimation of the occurrence probability of extreme events in the Kinmen waters. The results suggested that the Gumbel distribution fitness level is better than the relatively commoner Weber distribution. However, it is too conservative in terms of extreme big value. This study found that generalized extreme value distribution can best describe the wave statistical characteristics in the Quemoy waters.en_US
dc.description.tableofcontents摘 要....................................................i Abstract................................................iii 目錄......................................................I 圖目錄...................................................IV 表目錄..................................................XII 符號說明...............................................XIII 英文專門術語...........................................XVII 第一章 前言...............................................1 1.1 研究背景與緣起.......................................1 1.2 研究目的與方法.......................................5 1.3 本文組織.............................................8 第二章 文獻回顧...........................................9 2.1 全球波候變異.........................................9 2.1.1 大西洋波候變異.....................................9 2.1.2 太平洋波候變異....................................12 2.2 颱風強度變化趨勢....................................13 第三章、波浪推算模式.....................................17 3.1 SWAN模式介紹........................................17 3.2 模式計算範圍與設定..................................19 3.3 模式之調整..........................................21 3.3.1 流場影響項........................................21 3.3.2 風浪成長項 (Sin)..................................22 3.3.3 白沫消散項 (Sds)..................................27 3.4 模式驗證............................................31 第四章 波候變遷趨勢結果與討論............................68 4.1 台灣週邊海域波候於時間上之變異.......................68 4.1.1 近60年波候分析.....................................68 4.1.2 聖嬰、反聖嬰年與波候變異之關聯.....................70 一、聖嬰、反聖嬰現象.....................................70 二、聖嬰、反聖嬰年與波候相關性分析.......................73 4.1.3 冬夏季波候差異.....................................86 4.1.4 西北太平洋波候之十週年際震盪......................91 4.2 台灣週邊海域大波極端事件統計分析.....................93 4.2.1 極端事件分析......................................93 4.2.2 聖嬰年與反聖嬰年之波浪極端值差異..................107 4.2.3 金門海域示性波高極值分析..........................109 一、韋伯機率分布與甘保機率分布..........................111 二、廣義帕雷托分布與廣義極值分布........................115 4.3 波候變遷對台灣海域海事工程可工作日的變化趨勢影響....122 4.3.1 問題評析..........................................122 4.3.2 工期控制..........................................122 4.3.3 台灣周邊海域可工作日數分析........................123 4.4 波候變遷對海岸侵淤及波浪特性之影響..................127 4.4.1 波候變遷對海岸侵淤特性之影響......................127 4.4.2 波候變遷對波浪特性之影響..........................132 第五章 結論與建議.......................................137 5.1 結論...............................................137 5.2 建議...............................................139 參考文獻................................................141 附 錄 模式驗證颱風路徑圖.............................147 個人簡歷................................................152zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3001201210004700en_US
dc.subject波候變遷zh_TW
dc.subjectwave climate changing trenden_US
dc.subject年際震盪zh_TW
dc.subject聖嬰及反聖嬰現象zh_TW
dc.subject波浪尖銳度zh_TW
dc.subject大波極端事件zh_TW
dc.subject全球暖化zh_TW
dc.subject甘保分布zh_TW
dc.subject韋伯分布zh_TW
dc.subjectannual shocksen_US
dc.subjectEl Ni&ntildeen_US
dc.subjecto and La Ni&ntildeen_US
dc.subjecta phenomenaen_US
dc.subjectwave steepnessen_US
dc.subjectthe big wave extreme eventsen_US
dc.subjectthe global warmingen_US
dc.subjectthe Gumbel distributionen_US
dc.subjectthe Weber distributionen_US
dc.title台灣海域波候長期變遷趨勢研究zh_TW
dc.titleStudy on Wave Climate Change in Taiwan Wateren_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:土木工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.