Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1662
DC FieldValueLanguage
dc.contributor黃溪泉zh_TW
dc.contributor陳石法zh_TW
dc.contributor.advisor沈君洋zh_TW
dc.contributor.author鄒義明zh_TW
dc.contributor.authorTsou, Yi-Mingen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-05T11:41:22Z-
dc.date.available2014-06-05T11:41:22Z-
dc.identifierU0005-2107200618592300zh_TW
dc.identifier.citation1. Fridman, S. J. and Mueller, A. C., “Heat Transfer to Flat Surface”, Proceedings-General Discussion on Heat Transfer, The Institute of Mechanical Engineers, London, England, pp. 138-142, 1951. 2. Gardon, R. and Cobonpue, J. , “Heat Transfer between a Flat Plate and Jets of Air Impinging on it”, Int. Developments in Heat Transfer Conf., University of Colorado, CO, USA, August 28 to September 1, pp. 454-460, 1962. 3. Gardon, R. and Akfirat, J. C., “Heat Transfer Characteristics of Impinging Two Dimensional Air Jets”, J. Heat Transfer, Vol. 8, pp. 101-108, 1966. 4. Miyazaki, H. and Silbermann, E., “Flow and Heat Transfer on a Flat Plate Normal to a Two-Dimensional Laminar Jet Issuing from a Nozzle of Finite Height”, Int. J. Heat and Mass Transfer, Vol. 15, No. 11, pp. 2097-2107, 1972. 5. Striegl, S. A. and Diller, T. E., “An Analysis of the Effect of Entrainment Temperature on Jet Impingement Heat Transfer”, ASME J. Heat Transfer, Vol. 106, pp. 804-810, 1984. 6. Striegl, S. A. and Diller, T. E., “The Effect of Entrainment Temperature on Jet Impingement Heat Transfer”, ASME J. Heat Transfer, Vol. 106, pp. 27-33, 1984. 7. Goldstein, R. J. and Franchett, M. E., “Heat Transfer from a Flat Surface to an Oblique Impinging Jet”, J. Heat Transfer, Vol. 110, pp. 84-90, 1988. 8. Behbahani, A. I., “Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets”, J. Engrg. Power, Vol. 105, pp. 354-360, 1983. 9. Goldstein, R. J., Behbahani, A. I. and Heppelmann, K. K., “Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet”, ASME J. Heat Transfer, Vol. 29, pp. 1227-1235, 1986. 10. Goldstein, R. J., Sobolik, K. A. and Seol, W. S., “Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface”, ASME J. Heat Transfer, Vol. 112, pp. 608-611, 1990. 11. Fitzgerald, J. A. and Garimella, S. V., “Flow Field Effects on Heat Transfer in Confined Jet Impingement”, AMSE J. Heat Transfer, Vol. 119, pp. 630-632, 1997. 12. Fitzgerald, J. A. and Garimella, S. V., “A Study of the Flow Field of a Confined and Submerged Impinging Jet”, Int. J. Heat and Mass Transfer, Vol. 41, pp. 1025-1034, 1998. 13. Goldstein, R. J. and Timmers, J. F., “Visualization of Heat Transfer from Arrays of Impinging Jets”, Int. J. Heat and Mass Transfer, Vol. 25, No. 12, pp. 1857-1868, 1982. 14. Obot, N. T., Mujumdar, A. S. and Douglas, W. J. M., “Design of Nozzle Geometry on Impingement Heat Transfer under a Round Turbulent Jet”, ASME Paper 79-WA/HF53, 1979. 15. Metzger, D. E., Florschuetz, L. W., Takeuchi, D. I., Behee, R. D. and Berry, R. A., “Heat Transfer Characteristics for Inlined and Staggered Arrays of Circular Jets with Crossflow of Spent Air”, J. Heat Transfer, Vol. 101, pp. 526-531, 1979 . 16. Florschuetz, L. W., Berry, R. A. and Metzger, D. E., “Periodic Streamwise Variations of Heat Transfer Coefficient for Inlined and Staggered Arrays of Circular Jets with Crossflow of Spent Air”, J. Heat Transfer, Vol. 102, pp. 132-137, 1980. 17. Florschuetz, L. W., Truman, C. R. and Metzger, D.E, “Streamwise Flow and Heat Transfer Distributions for jet Array Impingement with Crossflow”, J. Heat Transfer, Vol. 103, pp. 337-342, 1981. 18. Kercher, D. M. and Tabakoff, W., “Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air”, J. Engrg. Power, Vol. 92, pp. 73-82, 1970. 19. Dano, B. P. E., Liburdy, J. A. and Kanokjaruvijit, K., “Flow Characteristics and Heat Transfer Performance of a Semi-Confined Impinging Array of Jet : Effect of Nozzle Geometry”, Int. J. Heat and Mass Transfer, Vol. 48, pp. 691-701, 2005. 20. San , J. Y. and Shiao , W. Z. , “ Effects of Jet Plate Size and Plate Spacing on the Stagnation Nusselt Number for a Confined Circular Air Jet Impinging on a Flat Surface”, Int. J. Heat and Mass Transfer, Vol. 55, 2006, to be appeared. 21. Yang , Y. T. and Wang , Y. X., “Three-Dimensional Numerical Simulation of an Inclined Jet with Cross-flow”, Int. J. Heat and Mass Transfer, Vol. 48, pp. 4019-4027, 2005. 22. Guerra, D. R. S., Su, J., Atila, P. and Freire,S., “ The Near Wall Behavior of an Impinging Jet”, Int. J. Heat and Mass Transfer, Vol. 48, pp. 2829-2840, 2005. 23. Yan , W. M., Liu , H. C., Soong , C. Y. and Yang , W. J., “Experimental Study of Impinging Heat Transfer along Rib-roughened Walls by Using Transient Liquid Crystal Technique”, Int. J. Heat and Mass Transfer, Vol. 48, pp. 2420-2428, 2005. 24. Wang , T., Lin , M. and Bunker, R. S., “Flow and Heat Transfer of Confined Impingement Jets Cooling Using a 3-D Transient Liquid Crystal Scheme”, Int. J. Heat and Mass Transfer, Vol. 48, pp. 4887-4903, 2005. 25. Huber, A. M. and Viskanta, R., “Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets”, Int. J. Heat and Mass Transfer, Vol. 37, pp. 2859-2869, 1994. 26. San, J. Y. and Lai, M. D., “Optimum Jet to Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets”, J. Heat and Mass Transfer, Vol. 44, pp. 3997-4007, 2001. 27. San, J. Y., Huang, C. H. and Shu, M. H., “Impingement Cooling of a Confined Circular Air Jet”, Int. J. Heat and Mass Transfer, Vol. 40, pp. 1355-1364, 1997. 28. Behbahani, A., Brizzi L. E. and Aydore, S., “Flow Visualization in An Impinging Circular Air Jet”, National Heat Transfer Conference HTD, Vol. 112, 1989. 29. Tani, I. and Komatsu, Y., “Impingement of a Round Jet on a Flat Surface”, Proc. of The Eleventh International Congress of Applied Mechanics (H. Gortler, Ed.), Springer-Verlag, New York, pp. 672-676, 1966. 30. 孫文港, 單孔垂直衝擊噴氣流之冷卻效應, 國立中興大學機械系碩士論文, 1993. 31. 黃志豪, 平行板中單孔垂直噴氣流之孔徑大小對熱傳之影響, 國立中興大學機械系碩士論文, 1995. 32. 陳文義, 多孔平行板中衝擊噴氣流孔距比對熱傳性能之影響, 國立中興大學機械系碩士論文, 1998 33. 林明濰, 衝擊噴氣流熱傳紐塞數之相關性, 國立中興大學機械系碩士論文, 2001. 34. 蕭文政, 噴氣面板之長度與寬度對單孔垂直衝擊噴氣流熱傳紐塞數之影響, 國立中興大學機械系碩士論文, 2005 35. 陳政傑, 多孔噴衝擊噴氣流孔徑大小對平板冷卻效果之影響, 國立中興大學機械系碩士論文, 2001zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1662-
dc.description.abstract本篇論文主要在於探討一個交錯排列之五孔噴氣流垂直衝擊於等熱通量加熱平板(衝擊面板)上之熱傳現象。實驗中就噴氣流出口之雷諾數(Re)、噴氣流之高度-孔徑比(H/d)、噴氣流之孔距-孔徑比(S/d)、噴氣流面板之長度-孔徑比(L/d)以及其寬度-孔徑比(W/d)等五種因素對衝擊面板上中心噴氣流之停滯點紐塞數之影響進行量測。本實驗中之噴氣流孔徑(d)為6.0 mm,加熱片之熱通量則固定在1,000 W/m2,而噴氣流面板與衝擊面板之寬度則為一致。噴氣流之雷諾數為5,000、10,000及15,000等三種;噴氣流之高度-孔徑比為1、2及4等三種;噴氣流孔距-孔徑比為4、6及8等三種;噴氣流面板寬度-孔徑比為6.25、10.42、14.58及18.75等四種;噴氣流之面板長度-孔徑比為31.7及83.33等兩種。實驗量測之數據經迴歸分析後所得之結果顯示,停滯點紐塞數分別與噴氣流出口之雷諾數之0.7次方與噴氣流面板之寬度-孔徑比之-0.49次方成正比之關係,而與噴氣流之高度-孔徑比、噴氣流之孔距-孔徑比及噴氣流面板之長度-孔徑比則並無太大之關係。zh_TW
dc.description.abstractThis work experimentally investigated the heat transfer for a staggered array of five jets vertically impinging on a flat plate with a constant surface heat flux. Jet Reynolds number (Re), jet height-to-jet diameter ratio (H/d), jet spacing-to-jet diameter ratio (S/d), jet plate length-to-jet diameter ratio (L/d) , and jet plate width-to-jet diameter ratio (W/d) were treated as the variables. The effects of these variables on the Nusselt number at the stagnation point of the center jet were individually determined. In the experiment , the jet diameter is 6 mm. The surface heat flux is 1,000 W/m2 . The width of the jet plate is the same as that of impingement plate. Three jet Reynolds numbers (Re= 5,000、10,000 and 15,000), three jet height-to-jet diameter ratios (H/d=1、2 and 4), three jet spacing-to jet diameter ratios (S/d=4、6 and 8), four jet plate width-to-jet diameter ratios ( W/d=6.25、10.42、14.58 and 18.75) and two jet plate length-to-jet diameter ratios (L/d=31.7 and 83.3) were individually considered. The correlation result reveals that the stagnation Nusselt number is proportional to the 0.7 power of the Re and -0.49 power of the W/d. But the jet height-to-jet diameter ratio, jet spacing-to-jet diameter ratio and jet plate length-to-jet diameter ratio appear to have a very weak influence on the stagnation Nusselt number.zh_TW
dc.description.tableofcontents目錄 中文摘要………………………………………………………Ⅰ 英文摘要………………………………………………………Ⅱ 誌謝……………………………………………………………Ⅲ 目錄……………………………………………………………Ⅳ 第一章 緒論.......................................1 1.1 前言..........................................1 1.2 文獻回顧......................................2 1.3 研究目的與內容................................8 第二章 實驗設備...................................10 2.1 高壓空氣之供應及壓力控制系統..................10 2.2 高壓空氣中水氣與油氣排除系統..................11 2.3 高壓空氣之流量量測............................12 2.4 溫度量測及控制系統............................12 2.4.1噴氣流全溫度之控制與量測設備.............12 2.4.2 室溫之控制與量測設備....................13 2.4.3 實驗面板之溫度量測設備與定位系統........13 2.5 加熱片熱通量供應及控制系統....................15 第三章 實驗原理與步驟.............................17 3.1 單孔衝擊噴氣流流場之特性......................18 3.2 流量量測之原理與方法..........................20 3.3 紐塞數量測之原理與方法........................21 3.3.1 紐塞數之定義............................21 3.3.2 實驗之方法..............................23 3.4 實驗步驟................................................24 第四章 實驗結果與迴歸分析討論.....................26 4.1 局部紐塞數之量測結果..........................27 4.1.1 鄰近雷諾數對停滯點紐塞數之影響..............27 4.1.2 雷諾數對中心噴氣流停滯點紐塞數之影響........29 4.1.3 噴氣流面板寬度孔徑比對停滯點紐塞數之影響....30 4.1.4 高度孔徑比對停滯點紐塞數之影響..............31 4.1.5 孔距孔徑比對停滯點紐塞數之影響..............32 4.1.6 長度孔徑比對停滯點紐塞數之影響..............32 4.2 迴歸分析之步驟................................33 第五章 實驗誤差分析...............................36 5.1 熱通量之誤差................................................36 5.1.1 衝擊面板與加熱片所產生之熱傳效應.36 5.1.2 電功率供給之誤差............................41 5.2 溫度量測誤差..................................41 5.3 整體平均誤差..................................42 第六章 結論.......................................43 參考文獻..........................................45zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107200618592300en_US
dc.subjectimpingementen_US
dc.subject衝擊zh_TW
dc.subjectheat transferen_US
dc.subjectstagnation pointen_US
dc.subjectNusselt numberen_US
dc.subject熱傳zh_TW
dc.subject停滯點zh_TW
dc.subject紐塞數zh_TW
dc.title一個交錯排列多孔噴氣流之熱傳相關性分析zh_TW
dc.titleHeat Transfer Correlation for a Staggered-Array Arrangement of Impinging Jetsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:機械工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.