Please use this identifier to cite or link to this item:
標題: 工具機單元結構中補強肋之最佳化設計
Design optimization of reinforced ribs on unit cell structure for machine tools
作者: 柯仁凱
Ke, Ren-Kai
關鍵字: Toplogy optimization
Shape optimization
Ribs of machine tool
Unit structure
出版社: 機械工程學系所
引用: 1. Bendsøe, M.P. and Kikuchi, N., “Generating Optimal Topologies in Structural Design Using a Homogenization Method”, Computer Methods in Applied Mechanics and Engineering, Vol. 71, PP. 197-224, 1988. 2. Mlejnek, H., “Some Aspects of the Genesis of structures”, Structural Optimization, Vol.5, PP. 64-69, 1992. 3. Wang, B.P., Lu C.M. and Yang R.J., “Topology Optimization Using MSC/NASRAN”, MSC User Conference, 1994. 4. 王政斌,“立式綜合加工機結構最佳化設計”,國立中興大學機械工程研究所碩士論文,民國87年6月。 5. 鐘炳春,“ANSI反齒鏈片之最佳化設計”,國立中興大學機械工程研究所碩士論文,民國93年12月。 6. Diaz, A. and Sigmund, O., “Checkerboard patterns in layout optimization”, Structural Optimization, Vol.10, PP. 40-45, 1995. 7. 李彥睿“拓樸最佳化設計變數懲罰方式之探討”,國立中興大學機 械工程研究所碩士論文,民國99年6月。 8. Wang, S. Y. and Tai, K., “Bar-system representation for topology optimization using genetic algorithms,” International Journal for Computer-Aided Engineering and Software, Vol. 22, No. 2, 2005, pp. 206-231. 9. Zbigniew, S., “Least-weight topology and size optimization of high speed vehicle-passenger catamaran structure by genetic algorithm,” Marine Structures, Vol. 22, 2009, pp. 691-711. 10. Zienkiewicz, O. C. and Campbell, J. S., “Shape Optimization and Sequential Linear Programming”, in R. H. Gallagher and O. C. Zienkiewicz(des.), Optimum Structure Design, Wiley, NEW YORK, 1973. 11. Kristensen, E. S. and Masdsen, N. F. “Optimum Shape of Fillets in Plane Loading Cases”, International Journal for Numerical Methods in Engineering, Vol. 10, 1976, pp.1007-1019. 12. Holzeitner, L. and Mahmoud, K.G., “Structural Shape Optimization Using MSC/NASTRAN and Sequential Quadratic Programming”, Computers & Structures Vol. 70, 1999, pp.487-514. 13. Kodiyalam, S., Vanderpalaats, G. N., Micra, H., Nagendra, K.G. and Wallerstein, D.V. “Structural Shape Optimization with MSC/NASTRAN ”, Structural Dynamics and Materials Conf., 1990 pp. 150-160. 14. Drischmid, W., “On the Shape Optimization of Large structures”, The 1989 MSC WORLD Users Conf. Proc., Vol. 2, Papper No.29, 1989. 15. Tang, W., Yi, H., and Xing, Y., “Bed Structure Analysis on the Machining Center,” Journal of Mechanical Strength, Vol. 20, No.1, 1998. 16. XU, Y., Zhang, X., Niu, Z., and Zhao, X., “Research Of Dynamic Design Of Machine Tools Bed Structures Based On Optimization Unit Structures And Frames,” Journal of Mechanical Strength, Vol. 23, No.1, pp. 001-003, 2001. 17. Zhang, X., XU, Y. S., and Zhong, W. H., “Research On Structural Optimization Method In Design Of NC Machine Tool Bed Based On Dynamic Analysis By FEM,” Journal of Mechanical Strength, Vol. 27, No.3, pp. 353-357, 1998. 18. Kim, S. J., Lee, H. U., and Cho, D. W., “Feedrate scheduling for indexable end milling process based on an improved cutting force model,” International Journal of Machine Tools & Manufacture, Vol. 46, 2006, PP. 1589-1597. 19. 詹俊凱,“競爭式多目標最佳車削參數之研究”,大同大學機械工程研究所碩士論文,民國95年5月。 20. MSC/NASTRAN 2010 Design Sensitivity and Optimization User’s Guide, MSC.Software Corporation, 2010.
摘要: 本論文主要目的為提升次結構的靜態剛性,其設計的過程為取出次結構中重複連接之單元結構的肋條設計空間,使用最佳化方法設計出肋條結構,然後重新組回成工具機使用的次結構,以提升次結構的剛性。在目前工具機結構中,常用的結構多為重複性次結構,而這種重複性次結構由單元結構所組成,其中單元結構包含外框結構與肋條結構。本文使用的最佳化設計分為兩個階段進行,第一階段先進行拓樸最佳化(Topology optimization),求得肋條結構的模糊初步外型。取得初步外型後,進行第二階段形狀最佳化(Shape optimization),讓模糊的初步外型有更好,更明確的形狀。第一階段的目標為變形量的極小化,限制條件為設計空間的材料使用量。第二階段的目標仍然為變形量的極小化,限制條件為肋條結構的重量必須與原設計相同。本文設計出六種不同的補強肋結構,前兩種使用在龍門銑床的立柱中,後四種使用於臥式車床的機座。 由結果顯示在本文設計的肋條中,使用於銑床立柱中之肋條結構和使用於車床底座中之三交叉板肋條結構都優於原始設計。但是兩交叉板肋條結構卻比原始設計差。
The main purpose of this thesis is to increase the stiffness of some substructures. In some substructures, repeated sections are often observed. The optimization methods are used to design the rib in a unit section in the substructure. The optimized unit section is then used repeatedly to form the substructure to improve the stiffness. The present structures of machine tools have many repeated unit sections in a substructure. The unit section includes both frame structure and rib structure. Two stages of optimization are applied. The first stage uses topology optimization to generate rough shape of rib structures, and then the rough shape is used as the initial shape for the second stage optimization. The second stage of design uses shape optimization to trim the initial shape of rib structures. The objective of topology optimization is to minimize the compliance of the rib structure subjected to material usage. The objective of shape optimization is still to minimize the compliance but the constraint limits the weight to be less than that of the original design. This thesis deals with six kinds of rib structures. The first two types of rib structures are used in the vertical column of a milling machine, and the other rib structures are used in the base structure of a lathe. According to the results, the rib structures that are used in the vertical column are superior to the original design. But the rib structure of two-cross plates is worse than original design.
其他識別: U0005-2307201110383400
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.