請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/16691
標題: 長鏈型硫代氨基甲酸類化合物對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素、脂肪酵素、青黴素酶和凝血酶抑制效果之研究
Inhibition Effects of Acetylcholinesterase, Butyrylcholinesterase, Cholinesterase, Lipase, Penicillinase and Thrombin by Long-Chain Thiocarbamates
作者: 楊基正
Yang, Chi-Chen
關鍵字: Thiocarbamate
硫代氨基甲酸類化合物
Inhibitor
抑制劑
出版社: 化學系所
引用: HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:129-130 HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:149-155 HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:6 Rosenberry TL. Acetylcholinesterase. AdvEnzymol Relat Areas Mol Biol. 1975; 43:103–218. D.M. Quinn. Acetylcholinesterase: enzyme structure reaction dynamics and virtual transition states. Chem. Rev. 1987; 87:955–979 Massoulie J, Bon S. The Molecular forms of Cholinesterase and Acetylcholinesterase in Vertebrates. Annual Reviews in Neuroscience 1982; 5: 57-106 Nelson DL, Cox MM. “Lehninger principles of biochemistry”. 4th ed. New York: WH Freeman and Company. 2005:72 Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991; 253:872–879. Rosenberry TL. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol. 1975; 43:103–218 Soreq H, Zakut H. “Human cholinesterases and anticholinesterases”. New York: Academic; 1983. Giacobini, E. “In Alzheimer_s Disease: Molecular Biology to Therapy: Becker R., Giacobini E”. Boston; Birkhauser; 1997:187–204. Giacobini E. “Cholinestease inhibitors do more than inhibit cholinesterase. In: Becker R, Giacobini E, editors. Alzheimer’s disease: Molecular biology to therapy“. Boston;Birkhauser; 1997:188–204. Taylor P. ”In: Gilman AG, Nies AS, Rall TW, Taylor P, editors. The pharmacological basis of therapeutics”. 5th edition. New York: Macmillan; 1975:131–150. Soreq H, Zakut H. “Human cholinesterases and anticholinesterases”. New York: Academic;1983. Taylor P. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology 1998;51(1,Suppl 1):S30–S67. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman1. Atomic structure of acetylcholinesterase from Torpedo californica:A prototypic acetylcholine-binding protein. Science 1991; 253:872-879. Gialih Lin, Hsin-Chang Tseng, Ai-Chi Chio, Tsao-Ming Tseng, Bo-Yi Tsai. A rate determining step change in the pre-steady state of acetylcholinesterase inhibitions by 1,n-alkane-di-N-butylcarbamates. Bioorganic & Medicinal Chemistry Letters 2005; 15:951-955 Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 2002; 41:3555–3564. Sultan Darvesh, David Hopkins, Changiz Geula. Neurobiology of Butyrylvholinesterase. Neuroscience 2003; 111:131-138 Mendel B,Rudney H. Studies on cholinesterase: Cholinesterase and pseudo-cholinesterase. Biochem J 1943; 37(1):59–63 Masson P, Froment M-T, Fort S, Ribes F, Bec N, Balny C, Schopfer LM. Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: Analysis of volume changes upon reaction and hysteretic behavior. Biochim Biophys Acta 2002; 1597:229–243. E. Stedman, L. K. Easson. Choline-esterase: An enzyme present in the blood-serum of the horse. Biochem. J 1932; 26:2056-2066 Chatonnet A,Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 1989; 15;260(3):625–634 Lockridge, O. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem 1987; 262:549–557 D Grob, JL Lilienthal Jr, AM Harvey, BF Jones - Bull. Johns Hopkins Hosp The administration of di-isopropyl fluorophosphates (DFP) to man. I.Effect on plasma and erythrocyte cholinesterase; general systemic effects; use in study of hepatic function and erythropoiesis; and some properties of plasma cholinesterase. Bull John Hopkins Hosp 81:217-244 Lockridge O, Eckerson HW, La Du BN. Interchain disulfide bonds and subunit organization in human serum cholinesterase. J Biol Chem 1979; 254(17):8324–8330 Quinn DM. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 1987; 87:955–979. Harel M, Quinn DM, Nair HK, Silman I, Sussman JL. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J Am Chem Soc 1996; 118:2340–2346. Bartolucci C, Perola E, Cellai L, Brufani M, Lamba D. ”Back door” opening implied by the crystal structure of a carbamoylated acetylcholinesterase. Biochemistry 1999; 38:5714–5719. Lombardo D. Modification of the essential amino acids of human pancreatic carboxylic-ester hydrolase. Biochim Biophys Acta. 1982; 700(1):67–74 Gallo LL, Clark SB, Myers S, Vahouny GV. Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase. J Lipid Res 1984; 25(6):604–612 Sutton, LD, Stout, JS,Hosie L, Spencer PS, Quinn DM. Phenyl- n-butylborinic acid is a potent transition state analog inhibitor of lipolytic enzymes. Biochem Biophys Res Commun 1986; 134:386-392. J. S. Stout , L. D. Sutton, D. M. Quinn.Dependence of transition-state structure on acyl chain length for cholesterol esterase-catalyzed hydrolysis of lipid p-nitrophenyl esters J. Am. Chem. Soc 1990; 112:8398-8403 Sutton LD, Froelich S, Hendrickson HS, Quinn DM. Cholesterol esterase catalyzed hydrolysis of mixed micellar thiophosphatidylcholines: a possible charge-relay mechanism. Biochemistry 1991; 30:5888–5893 D.M. Quinn. Acetylcholinesterase: enzyme structure reaction dynamics and virtual transition states. Chem. Rev 1987; 87:955–979 LL Gallo, SB Clark, S Myers, and GV Vahouny Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase. J. Lipid Res 1984; 25:604-612 Bhat SG, Brockman HL. The role of cholesteryl ester hydrolysis and. Purification and characterization. Eur J Biochem 1982; 116:221-225 Hui DY. Molecular biology of enzymes involved with cholesterol esterase hydrolysis in mammalian tissues. Biochim Biophys Acta 1996; 1303:1-14. Myers-Payne SC, Hui DY, Brockman HL, Schroeder F. Cholesterolesterase: a cholesterol transfer protein. Biochemistry 1995; 34(12):3942–3947 Gialih Lin, Wei-Cheng Liaoa, Shyh-Ying Chiou. Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n-substituted carbamates. Bioorganic & Medicinal Chemistry 2000; 11:2601-2607 A. R. Macrae, R. C. Hammond. Present and future applications of lipases. Biotechnol. 1985;3:193–217. Nelson DL, Cox MM. “Lehninger principles of biochemistry”. 4th ed. New York: WH Freeman and Company; 2005: 782 Hamosh, Margit Scow ,Robert O. Lingual Lipase and Its Role in the Digestion of Dietary Lipid. J Clin Invest 1973; 52:88–95 Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry 1992; 31:1532–1541 Gialih Lin, Wei-Cheng Liaoa, Shyh-Ying Chiou. Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n-substituted carbamates Bioorganic & Medicinal Chemistry 2000; 11:2601-2607 Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 1990; 343(6260):767–770 Di Cera, E. Dang, Q. D. Ayala. Molecular mechanisms of thrombin function. Cell. Mol. Life Sci 1997; 53:701–730 Fenton JW 2nd, Ofosu FA, Moon DG, Maraganore JM. Thrombin structure and function: why thrombin is the primary target for antithrombotics. Blood Coagul Fibrinolysis 1991; 2(1):69–75 G. Mlinsek, M. Novic, M. Hodoscek, T. Solmajer. Prediction of Enzyme Binding: Human Thrombin Inhibition Study by Quantum Chemical and Artificial Intelligence Methods Based on X-ray Structures. Inf. Comput. Sci. 2001; 41:1286–1294 A. Linusson, J. Gottfries, F. Lindgren, S. Wold. Statistical molecular design, rallel synthesis and biological evaluation of a library of thrombin inhibitors. J. Med. Chem. 2001; 44:3424–3439 A. Linusson, J. Gottfries, F. Lindgren, S. Wold. Statistical molecular design parallel synthesis and biological evaluation of a library of thrombin inhibitors. J. Med. Chem. 2001; 44:3424–3439 Das J, Kimball SD. Thrombin active site inhibitors. Bioorg Med Chem 1995; 3: 999-1007 CPR Walker, D. Royston. Thrombin generation and its inhibition: a review of the scientific basis and mechanism of action of anticoagulant therapies Br. J. Anaesth. 2002; 88: 848-863 Palzkill T, Botstein D. Probing beta-lactamase structure and function using random replacement mutagenesis. Proteins 1992; 14(1):29–44 SN Maiti, OA Phillips, RG Micetich, DM Livermore. Beta-lactamase inhibitors: agents to overcome bacterial resistance. Curr Med Chem 1998; 5(6):441-456 Stratton, C.W. The Role of β-Lactamases. Antimicrobics and Infectious Diseases Newsletter 1996; 15:17-18 Oefner C, D''Arcy A, Daly JJ, Gubernator K, Charnas RL, Heinze I, Hubschwerlen C, Winkler FK. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature 1990; 343:284-288 Hayes JD, Wolf CR. Molecular mechanisms of drug resistance. Biochem J 1990; 272: 281-295 Wang Z., W. Fast, AM Valentine, SJ Benkovic. Metallo-β-lactamase: structure and mechanism. Curr. Opin. Chem. Biol. 1999; 3:614-622 Patton JS, Warner TG, Benson AA. Partial characterization of the bile salt-dependent triacylglycerol lipase from the leopard shark pancreas. Biochim Biophys Acta. 1977; 486(2):322–330 Lombardo D, Guy O. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim Biophys Acta. 1980; 611(1):147–155 Abeles RH, Maycock AL. Suicide enzyme inactivators. Acc Chem Res 1976; 9:313-319 J. S. Stout, L. D. Sutton, D. M. Quinn. Dependence of transition-state structure on acyl chain length for cholesterol esterase-catalyzed hydrolysis of lipid p-nitrophenyl esters J. Am. Chem. Soc. 1990; 112:8398-8403 Kenakin TP. “Pharmacologic Analysis of Drug–Receptor Interaction”. 3rd ed. Lippincott-Raven; Philadelphia. 1997. HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall; 2002:147-148 李瑄瑜. 長鏈雙氨基甲酸取代化合物之雙酵素抑制研究. 國立中興大學化學研究所碩士論文. 1994 蔡泊宜. 二醇類之單、雙取代-氮-正丁基氨基甲酸類抑制劑對乙、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究. 國立中興大學化學研究所碩士論文. 2001 曾信彰. 二醇氨基甲酸類對膽鹼酯酵素、膽固醇酯酵素、脂肪酵素抑制之前穩定動力學研究. 國立中興大學化學研究所碩士論文. 2003 賴毓璿. 長鏈氨基甲酸類化合物對凝血酶及青黴素酶抑制機理之研究. 國立中興大學化學研究所碩士論文. 2005 蔡泊宜. 二醇類之單、雙取代-氮-正丁基氨基甲酸類抑制劑對乙、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究. 國立中興大學化學研究所碩士論文. 2001 賴毓璿. 長鏈氨基甲酸類化合物對凝血酶及青黴素酶抑制機理之研究. 國立中興大學化學研究所碩士論文. 2005
摘要: 本篇論文的研究內容,是合成長鏈型硫代氨基甲酸類化合物作為乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素、脂肪酵素、青黴素酶和凝血酶的抑制劑;透過動力學實驗分析,可以得到反應速率常數(kc)、解離常數(Ki)及總抑制常數(ki),進而了解抑制劑對於上述六種酵素的抑制效果;以及對此類抑制劑的酯類取代基,探討酵素抑制反應的影響和差異性。 藉由停時驗析實驗,長鏈型硫代氨基甲酸類化合物對六個酵素而言,皆屬於不可逆的類受質抑制劑。以抑制劑3為例,對於此六種酵素的抑制效果依序為丁醯膽鹼酯酵素、乙醯膽鹼酯酵素、脂肪酵素、膽固醇酯酵素、青黴素酶以及凝血酶。 相較於同樣構型之氨基甲酸類化合物,此類抑制劑對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素和脂肪酵素擁有較好的抑制效果;然而對青黴素酶和凝血酶之抑制效果則較差。
URI: http://hdl.handle.net/11455/16691
其他識別: U0005-2406200817582400
顯示於類別:化學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。