請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/16696
標題: 1.最短長度之扶手椅型、鋸齒型及其衍生型單層奈米碳管於不同拓樸結構之理論研究 2.硫化鋅奈米粒子量子效應在核磁共振光譜之量測
1. Theoretical study on the shortest armchair-, zigzag-, and mixing-type single-wall carbon nanotubes 2. Quantum-size Effect on 67Zn-NMR Measurements of ZnS Nanoparticles
作者: 林群欽
Lin, Eugene
關鍵字: carbon nanotube
奈米碳管
quantum confinement effect
量子侷限效應
出版社: 化學系所
引用: (1) Iijima, S. Nature 1991, 354, 56-58. (2) Sinnott, S. B. Journal of Nanoscience and Nanotechnology 2002, 2, 113-123. (3) Turker, L.; Erkoc, S. Journal of Molecular Structure-Theochem 2002, 577, 131-135. (4) Mintmire, J. W.; Dunlap, B. I.; White, C. T. Physical Review Letters 1992, 68, 631. (5) Hamada, N.; Sawada, S.-i.; Oshiyama, A. Physical Review Letters 1992, 68, 1579. (6) Blase, X.; Benedict, L. X.; Shirley, E. L.; Louie, S. G. Physical Review Letters 1994, 72, 1878. (7) Ouyang, M.; Huang, J. L.; Lieber, C. M. Acc. Chem. Res 2002, 35, 1018-1025. (8) Terrones, M. Annual Reviews in Materials Research 2003, 33, 419-501. (9) Dai, H. Surf. Sci 2002, 500, 218-241. (10) Rochefort, A.; Salahub, D. R.; Avouris, P. J. Phys. Chem. B 1999, 103, 641-646. (11) Lu, D.; Li, Y.; Rotkin, S. V.; Ravaioli, U.; Schulten, K. Nano Lett 2004, 4, 2383-2387. (12) Li, J.; Zhang, Y.; Zhang, M. Chemical Physics Letters 2002, 364, 338-344. (13) Galano, A. J. Chem. Phys. 2006, 327, 159-170. (14) Liu, L.; Jayanthi, C. S.; Guo, H.; Wu, S. Y. Physical Review B 2001, 64, 33414. (15) Matsuo, Y.; Tahara, K.; Nakamura, E. Org. Lett 2003, 5, 3181-3184. (16) Rochefort, A.; Salahub, D. R.; Avouris, P. Arxiv preprint cond-mat/9808271 1998. (17) Zhu, H. Y.; Klein, D. J.; Schmalz, T. G.; Rubio, A.; March, N. H. Journal of Physics and Chemistry of Solids 1998, 59, 417-423. (18) Li, J.; Zhang, Y.; Zhang, M. Chemical Physics Letters 2002, 364, 328-337. (19) Jiang, J.; Dong, J.; Xing, D. Y. Physical Review B 2002, 65, 245418. (20) Nakamura, E.; Tahara, K.; Matsuo, Y.; Sawamura, M. J Am Chem Soc 2003, 125, 2834-2835. (21) Moran, D.; Stahl, F.; Bettinger, H. F.; Schaefer, H. F.; Schleyer, P. R. Journal of the American Chemical Society 2003, 125, 6746-6752. (22) Chen, Z.; Jiang, D. E.; Lu, X.; Bettinger, H. F.; Dai, S.; Schleyer, P. V.; Houk, K. N. Org. Lett. 2007, 9, 5449-5452. (23) Matsuo, Y.; Tahara, K.; Nakamura, E. Org. Lett. 2003, 5, 3181-3184. (24) Heilbronner, E. Tetrahedron Lett. 1964, 29, 1923-1928. (25) Kittel, C. Introduction to Solid State Physics; 8th Edition ed.; Wiley, 2004. (26) Guillaume, M.; Champagne, B.; Perpete, E. A.; Andre, J. M. Theor. Chem. Acc. 2001, 105, 431-436. (27) Turker, L. Theochem-J. Mol. Struc. 1998, 454, 83-86. (28) Rzepa, H. S. Chem. Rev. 2005, 105, 3697-3715. (29) Martin-Santamaria, S.; Rzepa, H. S. J. Chem. Soc, Perkin Trans. 2 2000, 2378-2381. (30) Klein, D. J.; Misra, A. Match-Commun. Math. Co. 2002, 45-69. (31) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. The Journal of Chemical Physics 1978, 68, 3801. (32) Pearson, R. G. Acc. Chem. Res. 1993, 26, 250-255. (33) Parr, R. G.; Pearson, R. G. Journal of the American Chemical Society 1983, 105, 7512-7516. (34) Parr, R. G.; Szentpaly, L. v.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922-1924. (35) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065-2091. (36) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. R. Chem. Rev. 2005, 105, 3842-88. (37) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317-6318. (38) Schleyer, P. v. R.; Manoharan, M.; Jiao, H.; Stahl, F. Org. Lett. 2001, 3, 3643-3646. (39) von RagueSchleyer, P.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H.; Puchta, R.; van Eikema Hommes, N. J. R. Org. Lett. 2001, 3, 2465-2468. (40) Krygowski, T. M.; Cyranski, M. K. Chem. Rev. 2001, 101, 1385-1420. (41) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, R. C. G., Inc., Wallingford CT, 2004. (42) Ashcroft, N. W.; D., M. N. Solid State Physics; International edn ed.; Saunders College: Philadelphia, 1976. (43) Young, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley-Interscience, 2001. (44) Parr, R. G.; Yang, W. Density-functional Theory of Atoms and Molecules Oxford University Press, 1994. (45) Fulde, P. Electron Correlations in Molecules and Solids Springer, 1995. (46) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory; Springer, 1990. (47) Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864. (48) Thomas, L. H. Camb. Phil. Soc 1927, 23, 542-8. (49) Fermi, E. Rend. Accad. Naz. Lincei 1927, 6, 32. (50) Fermi, E. Phys 1928, 48, 73. (51) Teller, E. Rev. Mod. Phys 1962, 34, 627-631. (52) Lieb, E. H. Reviews of Modern Physics 1981, 53, 603-641. (53) Wang, L. W.; Teter, M. P. Physical Review B 1992, 45, 13196-13220. (54) Pearson, M.; Smargiassi, E.; Madden, P. A. J. Phys.: Condens. Matter 1993, 5, 3221-3240. (55) Perrot, F. J. Phys.: Condens. Matter 1994, 6, 431-446. (56) Smargiassi, E.; Madden, P. A. Physical Review B 1994, 49, 5220-5226. (57) Foley, M.; Madden, P. A. Physical Review B 1996, 53, 10589-10598. (58) Kohn, W.; Sham, L. J. Phys. Rev 1965, 140, A1133-A1138. (59) Becke, A. D. The Journal of Chemical Physics 1993, 98, 1372. (60) Lee, C.; Yang, W.; Parr, R. G. Physical Review B 1988, 37, 785-789. (61) Schleyer, P. v. R. Pure & Appl. Chem. 1996, 88, 209. (62) Sekiguchi, A.; Matsuo, T.; Watanabe, H. Journal of the American Chemical Society 2000, 122, 5652-5653. (63) Paquette, L. A.; Bauer, W.; Sivik, M. R.; Buehl, M.; Feigel, M.; Schleyer, P. R. Journal of the American Chemical Society 1990, 112, 8776-8789. (64) Buehl, M.; Thiel, W.; Jiao, H.; Schleyer, P. R.; Saunders, M.; Anet, F. A. L. Journal of the American Chemical Society 1994, 116, 6005-6006. (65) Turker, L. Journal of Molecular Structure-Theochem 2003, 631, 87-91. (66) Balaban, A. T. Polycyclic Aromatic Compounds 2007, 27, 51-63. (67) Norton, J. E.; Houk, K. N. Journal of the American Chemical Society 2005, 127, 4162-4163. (68) Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Sola, M. Journal of Organic Chemistry 2005, 70, 4560-4560. (69) Bendikov, M.; Duong, H. M.; Starkey, K.; Houk, K. N.; Carter, E. A.; Wudl, F. Journal of the American Chemical Society 2004, 126, 7416-7417. (70) Houk, K. N.; Lee, P. S.; Nendel, M. Journal of Organic Chemistry 2001, 66, 5517-5521. (71) Chattaraj, P. K.; Roy, D. R. Journal of Physical Chemistry A 2007, 111, 4684-4696. (1) Alivisatos, A. P. J. Phys. Chem 1996, 100, 13226-13239. (2) Norris, D. J.; Efros, A. L.; Rosen, M.; Bawendi, M. G. Physical Review B 1996, 53, 16347-16354. (3) Alivisatos, P. Nature Biotechnology 2004, 22, 47-52. (4) Fu, A.; Micheel, C. M.; Cha, J.; Chang, H.; Yang, H.; Alivisatos, A. P. J. Am. Chem. Soc 2004, 126, 10832-10833. (5) Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. J. Am. Chem. Soc 2004, 126, 301-310. (6) Konya, Z.; Puntes, V. F.; Kiricsi, I.; Zhu, J.; Ager, J. W.; Ko, M. K.; Frei, H.; Alivisatos, P.; Somorjai, G. A. Chem. Mater. 2003, 15, 1242-1248. (7) Kan, S.; Mokari, T.; Rothenberg, E.; Banin, U. Nature Materials 2003, 2, 155-158. (8) Kittel, C. Introduction to Solid State Physics; 8th Edition ed.; Wiley, 2004. (9) Colvin, V. L.; Alivisatos, A. P.; Tobin, J. G. Physical Review Letters 1991, 66, 2786-2789. (10) Bawendi, M. G. The Journal of Chemical Physics 1992, 96, 946. (11) Fu, H.; Zunger, A. Physical Review B 1997, 56, 1496-1508. (12) Tolbert, S. H.; Herhold, A. B.; Brus, L. E.; Alivisatos, A. P. Physical Review Letters 1996, 76, 4384-4387. (13) Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398. (14) Volokitin, Y.; Sinzig, J.; de Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseevi, II Nature 1996, 384, 621-623. (15) Nakaoka, Y.; Nosaka, Y. Langmuir 1997, 13, 708-713. (16) Rossetti, R.; Hull, R.; Gibson, J. M.; Brus, L. E. The Journal of Chemical Physics 1985, 82, 552-559. (17) Dinsmore, A. D.; Hsu, D. S.; Qadri, S. B.; Cross, J. O.; Kennedy, T. A.; Gray, H. F.; Ratna, B. R. Journal of Applied Physics 2000, 88, 4985. (18) Qadri, S. B.; Skelton, E. F.; Hsu, D.; Dinsmore, A. D.; Yang, J.; Gray, H. F.; Ratna, B. R. Physical Review B 1999, 60, 9191-9193. (19) Ladizhansky, V.; Vega, S. J. Phys. Chem. B 2000, 104, 5237-5241. (20) Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. J. Amer. Chem. Soc 2000, 122, 2532-2540. (21) Makowka, C. D.; Slichter, C. P.; Sinfelt, J. H. Physical Review B 1985, 31, 5663-5679. (22) Fritschij, F. C.; Brom, H. B.; de Jongh, L. J.; Schmid, G. Physical Review Letters 1999, 82, 2167-2170. (23) Thayer, A. M.; Steigerwald, M. L.; Duncan, T. M.; Douglass, D. C. Physical Review Letters 1988, 60, 2673-2676. (24) Tomaselli, M.; Yarger, J. L.; Bruchez Jr, M.; Havlin, R. H.; Pines, A.; Alivisatos, A. P. The Journal of Chemical Physics 1999, 110, 8861. (25) Jenkins, R.; Snyder, R. L. Introduction to X-ray Powder Diffractometry; Wiley and Sons: New York, 1996. (26) Schmidt-Rohr, K.; Spiess, H. W. Multidimensional solid-state NMR and polymers; Academic Press: London, 1994. (27) Chen, S.; Liu, W. M. Langmuir 1999, 15, 8100-8104. (28) Nanda, J.; Sapra, S.; Sarma, D. D. Chem. Mater 2000, 12, 1018-1024. (29) Lu, S. W.; Lee, B. I.; Wang, Z. L.; Tong, W.; Wagner, B. K.; Park, W.; Summers, C. J. Journal of Luminescence 2000, 92, 73-78. (30) Kho, R.; Torres-Mart??nez, C. L.; Mehra, R. K. Journal of Colloid And Interface Science 2000, 227, 561-566. (31) Bastow, T. J.; Stuart, S. N. Phys. Stat. Sol. B 1988, 145, 719. (32) Wu, G. Chemical Physics Letters 1998, 298, 375-380. (33) Larson, A. C.; Von Dreele, R. B. LANSCE, MS-H, 805. (34) Haller, M.; Hertler, W. E. Solid State Commun 1980, 33, 1051. (35) Simmons, W. W.; Slichter, C. P. Physical Review 1961, 121, 1580-1590. (36) de Wette, F. W. Physical Review 1961, 123, 103-112. (37) Kaufmann, E. N.; Vianden, R. J. Reviews of Modern Physics 1979, 51, 161-214. (38) Rabadanov, M. K.; Loshmanov, A. A.; Shaldin, Y. V. Kristallografiya 1997, 42, 649-659.
摘要: 奈米碳管的奇特電性在實驗及理論方面已被詳盡的研究,其中扶手椅型總是為導體,而鋸齒型則為導體或是半導體。但是當碳管長度受到侷限時,其電性則有十分大的改變,大部分的碳管都呈現非導體的性質,本文中所探討的最短奈米碳管皆屬此情況。而我們更進一步的改變碳管的直徑大小、拓樸學結構、及混合不同比例的扶手椅型和鋸齒型碳管,藉由理論計算的方式以AM1半經驗法及密度泛函理論(B3LYP/6-31G(d)),獲得不同的電子指標及芳香性指標,來討論其電性及穩定性。其結果顯示我們可以藉由混合不同比例的碳管來預測其能隙的大小,並評估其穩定性,換句話說,將來可能可以藉由不同的混合比例的碳管,來得到我們所想要的性質的碳管。而另一方面,不同拓樸結構則提供了在特定位置反應的可能性。 在4奈米大小的硫化鋅奈米粒子的鋅核磁共振光譜中,我們觀察到了訊號十分不尋常的消失。而伴隨著奈米粒子的成長期訊號再度出現,因而我們推測這是量子侷限效應中,過大的核四極矩作用力使訊號觀測不到。經由點電荷所造成的電場梯度大小,我們可以知道在奈米粒子從4奈米到30奈米的電場梯度有五個數量級大小的差別,也可間接證明量子侷限效應中四極矩的量子效應。
Various carbon nanotubes (CNTs) were studied theoretically with reactivity and aromaticity indices in density functional theory (DFT) level. Mixing-types CNTs provide the possibilities to form different electronic properties and stabilities with tuning the components of armchair or zigzag CNTs. Moreover, the local aromaticities show the distinct electronic properties of mixing-type CNTs or Möbius-type CNTs implying the further modifications on specific sites. An unusual NMR phenomenon is present to demonstrate the quantum-size effect of ZnS clusters with its length scale properly estimated within 4 nm from the 67Zn-NMR measurements. Strong quadrupole interaction induced from the quantum-size effect is proposed to explain this phenomenon. A simple calculation of the electric field gradient by direct summation over all lattice points was performed to demonstrate this size effect, and the result is in good agreement with the experimental observation.
URI: http://hdl.handle.net/11455/16696
其他識別: U0005-2606200815323400
顯示於類別:化學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。