Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16717
標題: 液相層析串聯質譜術於人體血清中盤尼西林代謝物之定性分析
Identification of Penicillin G Metabolites in Human Serum by Liquid Chromatography-Tandem Mass Spectrometry
作者: 何欣頻
Ho, Hsin-Pin
關鍵字: Tandem Mass Spectrometry
串聯質譜
Penicillin G
Metabolites
盤尼西林G
代謝物
出版社: 化學系所
引用: Reference [1] A. D. Deshpande, K. G. Baheti,N. R. Chatterjee, Degradation of β-lactam antibiotics, Current Science, 87 (2004) 1684. [2] J. P. Hou,J. W. Poole, beta-lactam antibiotics: Their physicochemical properties and biological activities in relation to structure, Journal of Pharmaceutical Sciences, 60 (1971) 503. [3] H. C. Neu, ß-Lactam Antibiotics: Structural Relationships Affecting in Vitro Activity and Pharmacologic Properties, Reviews of Infectious Diseases, 8 (1986) S237. [4] N. A. Rosário,A. S. Grumach, Allergy to beta-lactams in pediatrics: a practical approach, Jornal de Pediatria, 82 (2006) S181. [5] F. Sáchez-Sancho, E. Perez-Inestrosa, R. Suau, M. I. Montañez, C. Mayorga, M. J. Torres, A. Romano,M. Blanca, Synthesis, characterization and immunochemical evaluation of cephalosporin antigenic determinants, Journal of Molecular Recognition, 16 (2003) 148. [6] J. Frumin,J. C. Gallagher, Allergic Cross-Sensitivity Between Penicillin, Carbapenem, and Monobactam Antibiotics: What Are the chances?, The Annals of Pharmacotherapy, 43 (2009) 304. [7] J. N. Franklin Adkinson, MD, M. David Essayan, M. Rebecca Gruchalla, H. Haggerty, T. Kawabata, D. Sandler, L. Updyke,M. Neil H. Shear, Task Force Report:Future research needs for the prevention and management of immune-mediated drug hypersensitivity reactions, The Journal of Allergy and Clinical Immunology, 109 (2002) 461. [8] W. J. Pichler, Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept, Current Opinion in Allergy and Clinical Immunology, 2 (2002) 301. [9] A. T. Nagao-Dias, P. Barros-Nunes, H. L. L. Coelho,D. Solé, Allergic drug reactions, Jornal de Pediatria, 80 (2004) 259. [10] R. Y. Lin, A perspective on penicillin allergy, Archives of Internal Medicine, 152 (1992) 930. [11] W. J. Pichler, Drug Hypersensitivity Reactions: Classification and Relationship to T-Cell Activation, Karger, Basel, 2007. [12] M. E. Arroliga,L. Pien, Penicillin allergy: Consider trying penicillin again, Cleveland Clinic Journal of Medicine, 70 (2003) 313. [13] S. Roland,M. L. M., Systemic reactions to antibiotics, Immunology and Allergy Clinics of North America, 21 (2001) 679. [14] A. I. Neugut, A. T. Ghatak,R. L. Miler, Anaphylaxis in the United States, Archives of Internal Medicine, 161 (2001) 15. [15] M. Blanca, C. Mayorga,M. J. Torres, Side-chain-specific reactions to beta-lactams: 14 years later, Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 32 (2002) 192. [16] F. Silviu-Dan, S. Mcphillips,R. J. Warrington, The frequency of skin test reactions to side-chain penicillin determinants, The Journal of Allergy and Clinical Immunology, 91 (1993) 694. [17] G. O. Solley, G. J. Gleich,R. G. V. Dellen, Penicillin allergy: clinical experience with a battery of skin-test reagents, The Journal of Allergy and Clinical Immunology, 69 (1982) 238. [18] A. Basomba, A. Peláez, I. G. Villalmanzo,A. Campos, Allergy to penicillin unsuccessfully treated with a haptenic inhibitor (benzyl-penicilloyl-N2-formil-lysine; BPO-Flys), Clinical Allergy, 8 (1978) 341. [19] J. E. Erffmeyer,M. S. Blaiss, Proving penicillin allergy, Postgarduate Medicine, 2 (1990) 33. [20] J. A. Anderson, in P. Lieberman (Editor), Current Clinical Practice: Allergic Diseases: Diagnosis and Treatment, 3th, Humana Press, Totowa, 2007, p. 295. [21] P. J. Bousquet, H. B. Co-Minh, B. Arnoux, J. P. Daures,P. Demoly, Improtance of mixture of minor determinants and benzylpenicilloyl poly-L-lysine skin testing in the diagnosis of β-lactam allergy, Journal of Allergy and Clinical Immunology, 115 (2005) 1314. [22] A. K. Chandel, L. V. Rao, M. L. Narasu,O. V. Singh, The Realm of Penicillin G acylase in β-lactam antibiotics, Enzyme and Mecrobial Technology, 42 (2008) 199. [23] M. Cole, M. D. Kenig,V. A. Hewitt, Metabolism of Penicillins to Penicilloic Acids and 6-Aminopenicillanic Acid in Man and Its Significance in Assessing Penicillin Absorption, Antimicrobial Agents and Chemotherapy, 3 (1973) 463. [24] J. R. Everett, K. R. Jennings, G. Woodnutt,M. J. Buckingham, Spin-echo 1H N.M.R spectroscopy: a new method for studying penicillin metabolism, Journal of the Chemical Society. Chemical Communications (1984) 894. [25] W. J. J. Krauwinkel,N. J. Volkers-Kamermans, Determination of penicillin-V in human plasma by high-performance liquid chromatography and solid-phase extraction, Journal of Chromatography B, 679 (1996) 129. [26] M. L. Vestal, Tandem Mass Spectrometric Studies of the Fragmentation of Penicillins and Their Metabolites, Biomedical and Environmental Mass Spectrometry, 16 (1988) 381. [27] K. Kobayashi, K. Sato, Y. Mizuno,Y. Katsumata, Capillary High-Performance Liquid Chromatography-Fast Atom Bombardment Mass Spectrometry of 24 cephem Antibiotics, Journal of Chromatography B, 677 (1996) 275. [28] M. Scandola, G. Tarzia, G. Gaviraghi, D. Chiarello,P. Traldi, Mass Spectrometric Approaches in Structural Characterization of Cephalosporins, Biomedical and Environmental Mass Spectrometry, 18 (1989) 851. [29] A. F. Casy, C. Cryer,E. M. A. Ominde, Mass Spectrometry of β-lactam antibiotics with special reference to ionization by fast atom bombardment (FAB), Journal of Pharmaceutical and Biomedical Analysis, 7 (1989) 1121. [30] M. P. Barbalas, F. W. McLafferty,J. L. Occolowitz, Targeted Class Analysis of β-lactam Antibiotics by Tandem Mass Spectrometry, Biomedical Mass Spectrometry, 10 (1983) 258. [31] J. L. Gower, G. D. Risbridger,M. J. Redrup, Positive and negative ion fast atom bombardment mass spectra of some penicilloic acids, The Journal of Antibiotics, 37 (1984) 33. [32] D. M. Holstege, B. Purchner, G. Whitehead,F. D. Galey, Screening and Mass Spectral Confirmation of β-lactam Antibiotic Residues in Milk Using LC-MS/MS, Journal of Agricultural and Food Chemistry, 50 (2002) 406. [33] D. N. Heller, M. L. Smith,O. A. Chiesa, LC/MS/MS Measurement of Penicillin G in Bovine Plasma, Urine, and Biopsy Samples Taken From Kidneys of Standing Animals, Journal of Chromatography B, 830 (2006) 91. [34] Y. Kazakevich,R. Lobrutto, HPLC for pharmaceutical scientists, Jonh Wiley and Sons, 2007. [35] W. Paul,H. Steinwedel, A New Mass Spectrometer Without Magnetic Field, Zeitschrift für Naturforschung, 8a (1953) 448. [36] R. E. March,J. F. J. Todd, Quadrupole Ion Trap Mass Spectrometry, Wiley-Interscience, New Your, 2005. [37] E. d. Hoffmann,V. Stroobant, Mass Spectrometry-Principles and Applications, John Wiley & Sons Ltd., London, 2007. [38] J. Yinon, Advances in Forensic Applications of Mass Spectrometry, CRC PRESS, New York, 2003. [39] M. C. McMaster, LC/MS: a practical user''s guide, John Wiley and Sons (2005) 165. [40] J. E. McClellan, S. T. Quarmby,R. A. Yost, Parent and Neutral Loss Monitoring on a Quadrupole Ion Trap Mass Spectrometer: Screening of Acylcarnitines in Complex Mixtures, Analytical Chemistry, 74 (2002) 5799. [41] M. L. Salomonsson, U. Bondesson,M. Hedeland, In Vitro Formation of Phase I and II Metabolites of Propranolol and Determination of Their Structures Using Chemical Derivatization and Liquid Chromatography-Tandem Mass Spectrometry, Journal of Mass Spectrometry: JMS, 44 (2009) 742. [42] Y. Sawada, K. Akiyama, A. Sakata, A. Kuwahara, H. Otsuki, T. Sakurai, K. Saito,M. Y. Hirai, Widely Targeted Metabolomics Based on Large-Scale MS/MS Data for Elucidating Metabolite Accumulation Patterns in Plants, Plant & Cell Physiology, 50 (2009) 37. [43] S. Bourcier,Y. Hoppilliard, Use of diagnostic neutral losses for structural information on unknown aromatic metabolites: an experimental and theoretical study, Rapid Communications in Mass Spectrometry, 23 (2009) 93. [44] L. L. Lopez, D. M. Drexler, I. Mylchreest,J. C. Schwartz, in Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics, Dallas, TX, 1999. [45] J. V. Johnson, R. A. Yost, P. E. Kelly,D. C. Bradford, Tandem-in-Space and Tandem-in-Time Mass Spectrometry (MS/MS): Triple Quadrupoles and Quadrupole Ion Traps, Analytical Chemistry, 62 (1990) 2162. [46] Y. Wang,H. Prest, Accurate Mass Measurement on Real Chromatographic Time Scale with a Single Quadrupole Mass Spectrometer, Chromatography, 27 (2006) 135. [47] M. Gu, Y. Wang, X. G. Zhao,Z. M. Gu, Accurate Mass Filtering of Ion Chromatograms for Metabolite Identification Using a Unit Mass Resolution Liquid Chromatography/Mass Spectrometry System, Rapid Communications in Mass Spectrometry, 20 (2006) 764. [48] B. J. Goolsby,J. S. Brodbelt, Characterization of β-lactams by Photodissociation and Collision-activated Dissociation in a Quadrupole Ion Trap, Journal of Mass Spectrometry: JMS, 33 (1998) 705. [49] A. Tevell, U. Bondesson, K. Törneke,M. Hedeland, Identification of Some New Clemastine Metabolites in Dog, Horse, and Human Urine With Liquid Chromatography-Tandem Mass Spectrometry, Rapid Communications in Mass Spectrometry, 18 (2004) 2267. [50] M. Holčapek, L. Kolářová,M. Nobilis, High-Performance Liquid Chromatography-Tandem Mass Spectrometry in The Identification and Determination of Phase I and Phase II Drug Metabolites, Analytical and Bioanalytical Chemistry, 391 (2008) 59. [51] H. Lioe,R. A. J. O. Hair, Comparison of Collision-induced Dissociation and Electron-induced Dissociation of Singly Protonated Aromatic Amino Acids, Cystine and Related Simple Peptides Using A Hybride Linear Ion Trap-FT-ICR Mass Spectrometer, Analytical and Bioanalytical Chemistry, 389 (2007) 1429. [52] C. S. Wright, Evaluation of Penicillin Allergy in an Allergy Immunology Practice, Journal of Allergy and Clinical Immunology, 119 (2007) S67.
摘要: 盤尼西林G及其代謝產物導致人體過敏反應,為其用藥限制最主要的原因。至今對其代謝產物機制仍有許多不明白的地方,造成在臨床上無法確切和有效的預防過敏反應的產生。故本實驗將採用具有高選擇性及高靈敏度的數據依據性液相層析串聯質譜技術 (Data-dependent LC-MSn) 對人體血清中盤尼西林G及其微量代謝物進行鑑定分析,試圖找出目前尚未發現之微量代謝物,推測其代謝途徑,並藉由MassWorks軟體對推測結果進行精確分子量的測量。根據實驗結果成功檢測出七個盤尼西林G代謝產物,包括二個已知代謝物 (Penicilloate, C16H21N2O5S 和 Penilloate, C15H21N2O3S) 及五個未知代謝物 (C19H25N2O7S、C19H27N2O7S、C16H21N2O6S、C22H29N2O11S和C22H31N4O8S3)。本實驗同時證實Data-dependent LC-MSn於人體藥物代謝物偵測的可行性,所得之實驗結果將作為盤尼西林G微量代謝物於過敏反應機制的研究的參考依據。
Penicillin G (PCN G) was the first antibiotic found and widely applied for human bacterial disease; however, hypersensitivity reactions to penicillin are due to different metabolites formed in vivo when the antibiotic is administered. Several penicillin metabolites in human allergic reaction have been studied and assessed by using penicillin skin test. Unfortunately, the skin test still may give false-negative results and bring the risk of unsafety, such as anaphylactic reactions. Currently, LC-MS and LC-MS/MS were applied to characterize drug metabolites, but they remain time-consuming processes. Frequently, the data obtained are insufficient to locate the site of metabolism on a candidate molecule. Data-dependent LC-MSn is a powerful tool to provide large amounts of the necessary structural information regarding each analyte in one chromatographic run, thereby allowing for a more detailed characterization of the metabolites. Furthermore, it is highly sensitive and selective to detect trace metabolites even in a complex matrix. In the study, Data-dependent LC-MSn was utilized to identify trace metabolites of PCN G in human serum. From the results, in addition to the known metabolites, such as penicilloate and penilloate, the trace unknown metabolites of PCN G metabolites were successfully identified. The structures were determined as the proposed unknown metabolites have been further confirmed by using MassWorks.
URI: http://hdl.handle.net/11455/16717
其他識別: U0005-1007200909044900
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.