Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16718
標題: 質譜術於尿液中微量安非他命類化合物之分析
Mass spectrometry for analysis of amphetamines in urine
作者: 鍾莉雯
Chung, Li-Wen
關鍵字: Analysis of variance
變異數分析
Gas chromatography-mass spectrometry
Microwave-assisted derivatization
Negative chemical ionization
Orthogonal array design
氣相層析質譜儀
微波輔助衍生化
負離子化學游離化法
正交實驗設計
出版社: 化學系所
引用: [1] L. Edeleanu, Ber Deutsch Chem Ges. 20 (1887) 616. [2] U.S. 1,921,424, to F.P. Nabenhauer, Therapeutic substituted benzyl carbinamines, 3 August 1933 [3] A. Baskin-Sommers, I. Sommers, J Crim Justice 34 (2006) 661. [4] J. Caldwell, S.J. Mulé, Amphetamines and related stimulants: chemical, biological, clinical, and sociological aspects, CRC Press Boca Raton, Fla, 1980. [5] M. Sato, Psychopharmacol. Bull. 22 (1986) 751. [6] O. Quintela, A.M. Bermejo, M.J. Tabernero, S. Strano-Rossi, M. Chiarotti, A.C.S. Lucas, Forensic Sci. Int. 107 (2000) 273. [7] M. Appleby, M. Fisher, M. Martin, Int. J. Cardiol. 44 (1994) 171. [8] W.C. Cheng, V.K.-K. Mok, K.K. Chan, A.F.-m. Li, Forensic Sci. Int. 166 (2007) 1. [9] J.R.L. Schwartz, T. Roth, Drugs 66 (2006) 2357. [10] J. Padilla, M.C. Eguíalis G., F. Mendoza G., V.A. Santos C., P. Ojeda C., Proc. West. Pharmacol. Soc. 45 (2002) 191. [11] A.C. Lua, H.R. Lin, Y.T. Tseng, A.R. Hu, P.C. Yeh, Forensic Sci. Int. 136 (2003) 47. [12] S.B. Karch, Drug Abuse Handbook, CRC Press, 1998. [13] B. Greenhill, V. Sandra, J.T. Cody, J. Anal. Toxicol. 27 (2003) 479. [14] R.J.F. Schepers, J.M. Oyler, R.E. Joseph, Jr., E.J. Cone, E.T. Moolchan, M.A. Huestis, Clin. Chem. 49 (2003) 121. [15] L. Wang, F. Feng, X.Q. Wang, L. Zhu, J. Pharm. Sci. 98 (2009) 728. [16] J.J. Thomason, Rays of postive electricity and their application to chemical analyses, Longmans, Green and Co, London, 1913. [17] F.W. Aston, Mass Spectra and Isotopes, ed 3, Edward Arnold and Co, Longdon, 1942. [18] 王應瓊, 儀器分析, 中央圖書出版社, 臺北市, 1997. [19] http://nobelprize.org/nobel_prizes/chemistry/laureates/2002/press.html [20] D.A. Skoog, J.J. Leary, Principles of Instrumental analysis, 4th ed., Thomson Learning, Saunders College Philadelphia, 1992. [21] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental analysis, 5th ed., Harcourt Brace College, Philadelphia, USA, 1998. [22] G.D. Daves, Jr., Acc. Chem. Res. 12 (1979) 359. [23] V.L. Tal''roze, A.K. Ljubimova, J. Mass Spectrom. 33 (1998) 502. [24] M.S.B. Munson, F.H. Field, J. Am. Chem. Soc. 88 (1966) 2621. [25] A.G. Harrison, Chemical Ionization Mass Spectrometry, CRC Press, Boca Raton, FL, 1992. [26] F.H. Field, M.S.B. Munson, J. Am. Chem. Soc. 87 (1965) 3289. [27] S. Lias, J. Bartmess, J. Liebman, J. Holmes, R. Levin, W. Mallard, J. Phys. Chem. Ref. Data 17 (1988) suppl 1. [28] A.G. Harrison, Chemical ionization mass spectrometry, 2nd ed., CRC Press, Bocca Raton, F1, 1984. [29] E.d. Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications 2nd ed, John Wiley & Sons, LTD, West Sussex, England, 2001. [30] 黃文雄, 質譜分析術專輯, 行政院國家科學委員會精密儀器發展中心, 台北市, 1992. [31] H.-F. Wu, Y.-P. Lin, J. Mass Spectrom. 34 (1999) 1283. [32] L.-W. Chung, G.-J. Liu, Z.-G. Li, Y.-Z. Chang, M.-R. Lee, J. Chromatogr. B 874 (2008) 115. [33] L.-W. Chung, K.-L. Lin, T.C.-C. Yang, M.-R. Lee, J. Chromatogr. A 1216 (2009) 4083. [34] Y.H. Wu, K.L. Lin, S.C. Chen, Y.Z. Chang, Rapid Commun. Mass Spectrom. 22 (2008) 887. [35] J.S. Chiang, S.D. Huang, J. Chromatogr. A 1185 (2008) 19. [36] 劉俊亭, 王文彬, Chinese Journal of Chromatography 12 (1994) 388. [37] A.H. Anton, D.F. Sayre, J Pharmacol Exp Ther 138 (1962) 360. [38] http://www.sigmaaldrich.com/Graphics/Supelco/objects/4600/4538.pdf [39] http://www.instrument.com.cn/Quotation/Manual/56345.pdf [40] H.M. Kingston, S.J. Haswell, Microwave-enhanced chemistry: fundamentals, sample preparation, and applications, American Chemical Society, Washington, DC c1997. [41] H.M. Kingston, L.B. Jassie, Introduction to microwave sample preparation: theory and practice, American Chemical Society, Washington, D.C., 1988. [42] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Trahedron Lett. 27 (1986) 279. [43] B.L. Hayes, Microwave Synthesis, CEM Publishing, 2002. [44] 朱怡達, 物理研究所, 台灣大學, 台北市, 2005. 2.6 參考文獻 [1] J. Douglas, G. Bergeth, J. Lund, in Reginal Amphetamine-Type Stimulant Forum: responding to the threat, UNITED NATIONS Office on Drug and Crime Regional Centre for East Asia and the Pacific, Manila, Philippines, 2007. [2] M.R. Lee, Y.S. Song, B.H. Hwang, C.C. Chou, J. Chromatogr. A 896 (2000) 265. [3] L. Avois, N. Robinson, C. Saudan, N. Baume, P. Mangin, M. Saugy, Br. J. Sports Med. 40 (2006) i16. [4] A. Baskin-Sommers, I. Sommers, J Crim Justice 34 (2006) 661. [5] C.C. Chou, M.R. Lee, Anal. Chim. Acta 538 (2005) 49. [6] Y.H. Wu, K.L. Lin, S.C. Chen, Y.Z. Chang, Rapid Commun. Mass Spectrom. 22 (2008) 887. [7] J.S. Chiang, S.D. Huang, J. Chromatogr. A 1185 (2008) 19. [8] V.G. Zaikin, J.M. Halket, Eur. J. Mass Spectrom. 9 (2003) 421. [9] T. Saito, H. Mase, S. Takeichi, S. Inokuchi, J. Pharm. Biomed. Anal. 43 (2007) 358. [10] B.L. Hayes, Microwave Synthesis, CEM Publishing, 2002. [11] M. Athanasios, L. Georgios, K. Michael, Food Chem. 102 (2007) 606. [12] F.T. Peters, S. Schaefer, R.F. Staack, T. Kraemer, H.H. Maurer, J. Mass Spectrom. 38 (2003) 659. [13] W.C. Thompson, A. Dasgupta, Clin. Chem. 40 (1994) 1703. [14] C. Deng, X. Yin, L. Zhang, X. Zhang, Rapid Commun. Mass Spectrom. 19 (2005) 2227. [15] P. Li, Y. Qiu, H. Cai, Y. Kong, Y. Tang, D. Wang, M. Xie, Chinese Journal of Chromatography 24 (2006) 14. [16] D. Li, J. Park, Anal. Chem. 73 (2001) 3089. [17] http://www.chem.agilent.com/cag/prod/CA/methodcards.pdf. [18] M. Nishida, M. Yashiki, A. Namera, K. Kimura, J. Chromatogr. B 842 (2006) 106. [19] S.M. Wang, C.C. Lin, T.L. Li, C.Y. Shih, Y.S. Giang, R.H. Liu, Anal. Chim. Acta 576 (2006) 140. [20] B.M. El-Haj, A.M. Al-Amri, M.H. Hassan, H.S. Ali, R.K. Bin Khadem, Forensic Sci.Int. 135 (2003) 16. [21] T.W.G. Solomons, C.B. Fryhle, in D. Brennan (Editor), Organic chemistry, John Wiley & Sons, Inc., 2004, p. 739. [22] Y. Zuo, K. Zhang, Y. Lin, J. Chromatogr. A 1148 (2007) 211. [23] L. Abrankó, Z. Jókai, P. Fodor, Anal. Bioanal. Chem. 383 (2005) 448. [24] V. Maresova, J. Chadt, L. Prikryl, Neuroendocrinol. Lett. 27 (Suppl. 2) (2006) 121. [25] R. Zanella, E.G. Primel, F.F. Goncalves, A.F. Martins, J. Chromatogr. A 904 (2000) 257. [26] R.J. Czarny, C.L. Hornbeck, J. Anal. Toxicol. 13 (1989) 257. 3.8 參考文獻 [1] F.T. Peters, S. Schaefer, R.F. Staack, T. Kraemer, H.H. Maurer, J. Mass Spectrom. 38 (2003) 659. [2] Y. Sha, C. Deng, B. Liu, J. Chromatogr. A 1198-1199 (2008) 27. [3] A. Ranz, A. Eberl, E. Maier, E. Lankmayr, J. Chromatogr. A 1192 (2008) 282. [4] C. Deng, X. Yin, L. Zhang, X. Zhang, Rapid Commun. Mass Spectrom. 19 (2005) 2227. [5] L.-W. Chung, G.-J. Liu, Z.-G. Li, Y.-Z. Chang, M.-R. Lee, J. Chromatogr. B 874 (2008) 115. [6] P. Oles, A. Yankovich, LC-GC 7 (1989) 579. [7] L. Sun, H.K. Lee, J. Chromatogr. A 1014 (2003) 165. [8] N. Bahramifar, Y. Yamini, M. Shamsipur, J. Supercrit. Fluids 35 (2005) 205. [9] C. Díez, E. Barrado, P. Marinero, M. Sanz, J. Chromatogr. A 1180 (2008) 10. [10] Y. Yamini, A. Saleh, M. Khajeh, Sep. Purif. Technol. 61 (2008) 109. [11] P.J. Ross., Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 1996. [12] G. Taguchi, Taguchi methods design of experiments, ASI Press/Tokyo, Dearborn MI, 1993. [13] http://www.chem.agilent.com/cag/prod/CA/methodcards.pdf. [14] M. Nishida, M. Yashiki, A. Namera, K. Kimura, J. Chromatogr. B 842 (2006) 106. [15] D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 2006. [16] L. Mateo-Vivaracho, J. Cacho, V. Ferreira, J. Chromatogr. A 1146 (2007) 242. [17] R.J.F. Schepers, J.M. Oyler, R.E. Joseph, Jr., E.J. Cone, E.T. Moolchan, M.A. Huestis, Clin. Chem. 49 (2003) 121. [18] B. Greenhill, V. Sandra, J.T. Cody, J. Anal. Toxicol. 27 (2003) 479. [19] L. Wang, F. Feng, X.Q. Wang, L. Zhu, J. Pharm. Sci. 98 (2009) 728. [20] J. Witte, A. Büthe, W. Ternes, Chemosphere 41 (2000) 529. [21] M.R.V.S. Murty, S. Prabhakar, V.V.S. Lakshmi, U.V.R.V. Saradhi, T.J. Reddy, M. Vairamani, Anal. Chem. 77 (2005) 3406. [22] B.L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing, Matthews, 2002. [23] S.-L. Chou, M.-H. Yang, Y.-C. Ling, Y.-S. Giang, J. Chromatogr. B 799 (2004) 37. [24] S. Xie, J. Aspromonte, A. Balla, H. Sershen, D.C. Javitt, T.B. Cooper, J. Chromatogr. B 805 (2004) 27. [25] L. Abrankó, Z. Jókai, P. Fodor, Anal. Bioanal. Chem. 383 (2005) 448. [26] J.-S. Chiang, S.-D. Huang, J. Chromatogr. A 1185 (2008) 19. [27] T.-Y. Wu, M.-R. Fuh, Rapid Commun. Mass Spectrom. 19 (2005) 775. [28] Y.-H. Wu, K.-l. Lin, S.-C. Chen, Y.-Z. Chang, J. Chromatogr. B 870 (2008) 192. [29] R. Zanella, E.G. Primel, F.F. Gonçalves, A.F. Martins, J. Chromatogr. A 904 (2000) 257. [30] R.J. Czarny, C.L. Hornbeck, J. Anal. Toxicol. 13 (1989) 257.
摘要: 本研究是利用質譜定性及定量分析的技術,對尿液中微量安非他命及甲基安非他命偵測方法的開發。以固相萃取法萃取尿液中的待測物,再進行微波輔助衍生化反應,所得產物以氣相層析質譜儀分析。微波輔助衍生化技術,一般探討「微波功率」及「照射時間」對微波輔助衍生化效率的影響。本實驗特增加探討「溶劑」因子對微波輔助衍生化效率的影響。實驗中,使用不同溶劑作探討,更與未添加溶劑的微波輔助衍生化反應對照。添加溶劑大大地提升微波輔助衍生化效率。尤其是添加乙酸乙酯,微波功率 250 瓦,照射時間一分鐘,即可達最佳衍生化效率。將此最佳化條件應用於尿液中安非他命類化合物之偵測,線性範圍為 1-1000 ng mL-1,線性相關係數為 0.9992 以上。同日間精密度與異日間精密度均低於 15% 。進而將此技術應用於濫用藥物可疑者之尿液檢體,結果可精確地定量分析。由上述實驗證明,溶劑改善微波輔助衍生化結合氣相層析質譜法,成功地應用於尿液中安非他命類化合物之偵測。 第二部分實驗採用直交實驗設計法,搭配變異數分析,在最少的實驗次數下,評估三項實驗因子 : 溶劑、微波功率、照射時間及彼此之間的交互作用,對待測物與五氟苯醯氯微波輔助衍生化效率的影響。採用 OAD16 (44) 的直交表對三項實驗因子進行最佳化,實驗次數僅 16 次。當甲苯作為添加溶劑,微波功率 225 瓦,照射時間兩分鐘,即可達最佳衍生化效率。實驗因子對實驗過程影響之程度的檢視,採用變異數分析表的F值與貢獻度作研判。結果顯示,溶劑為主要顯著因子,是影響最佳化過程的重要關鍵。微波功率及照射時間為次要顯著因子,彼此之間的交互作用影響不大。將此最佳化條件應用於尿液檢體之偵測,安非他命的線性範圍為 0.01 至 100 ng mL-1 ,線性相關係數為 0.9988 ;甲基安非他命的線性範圍為 0.1 至 1000 ng mL-1 ,線性相關係數為 0.9951 。安非他命的偵測極限為 1.20 pg mL-1,甲基安非他命的偵測極限為 13.04 pg mL-1 。進而將此技術應用於濫用藥物可疑者之尿液檢體,結果可精確地定量分析。由上述實驗證明,微波輔助衍生化結合氣相層析負離子化學游離化質譜法,成功地應用於尿液中微量安非他命類化合物之偵測 , 可提供尿液中微量安非他命類化合物檢測之參考。
An approach using microwave-assisted derivatization (MAD) following solid phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) was developed to determine amphetamines in urine samples. The parameters affecting the derivatization efficiency - including microwave power and irradiation time - were investigated. Besides, solvent is thought critically important to MAD. Derivatization performance was studied using various solvents and compared with the performance obtained without solvent. Derivatization efficiency was clearly found to be enhanced by the presence of solvent. Heptafluorobutyric anhydride (HFBA) was used as the derivatization reagent. The highest derivatization efficiencies were obtained in ethyl acetate (EA) under microwave power of 250 W for 1 minute. Calibration curves for all amphetamines were linear over a range from 1 to 1000 ng mL-1, with correlation coefficients above 0.9992. The intra-day and inter-day precision were less than 15%. The applicability of the method was tested by analyzing amphetamine-abusing subjects urine samples. Accordingly, the solvent-enhanced MAD-GC-MS method appears to be adequate for determining amphetamines in urine. An orthogonal array design (OAD) was applied to optimize microwave-assisted derivatization (MAD) for analysis of trace amphetamine (AM) and methamphetamine (MA) by negative chemical ionization gas chromatography-mass spectrometry (NCI GC-MS). 2,3,4,5,6-pentafluorobenzoyl chloride (PFBC) was used as the derivatization reagent. Experimental factors including solvent, microwave power, and irradiation time at four-levels were studied in 16 trials by OAD16 (44). The significance of these factors was investigated using analysis of variance (ANOVA) and percent contribution (PC). Solvent is statistically demonstrated a chief factor; microwave power and irradiation time are secondary parameters. Under the optimum condition, calibration curve of AM is linear over a range from 0.01 to 100 ng mL-1 with correlation coefficient 0.9988, and MA from 0.1 to 1000 ng mL-1 with correlation coefficient 0.9951. The limit of detection (LOD) is 1.20 pg mL-1 for AM and 13.04 pg mL-1 for MA. An applicability of the method was tested by analyzing urine samples from amphetamine-type stimulants (ATS)-abusing suspects. Consequently, the OAD method not only optimizes the MAD condition for determination of trace AM and MA, but identifies the effects of factor solvent, microwave power and irradiation time on the MAD performance.
URI: http://hdl.handle.net/11455/16718
其他識別: U0005-1007200910171400
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.