請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/16787
標題: 1.製備柱狀銅花青於金奈米粒子薄膜上與其應用 2.生物分子之單分子力學量測
1.Fabrication of copper phthalocyanine rods on gold nanoparticle films and its application in organic solar cells 2.Mechanical properties of biomolecules studies using atomic force microscopy
作者: 陳威宏
Chen, Wei-Hung
關鍵字: 金奈米粒子
Gold nanoparticles
Copper phthalocyanine
Electrochemical deposition
Organic thin film photovoltaic
Single molecular manipulation
出版社: 化學系所
引用: [1] Martin A. Green. Crystalline and thin-film silicon solar cells: State of the art and future potential. Solar Energy, 74:181-192, 2003. [2] T. Soderstrom, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif. Optimization of amorphous silicon thin film solar cells for flexible photovoltaics. Journal of Applied Physics, 103:114509, 2008. [3] Jens A. Hauch, Pavel Schilinskya, Stelios A. Choulisa, Richard Childers, Markus Bielea, and Christoph J. Brabeca. Flexible organic p3ht:pcbm bulkheterojunction modules with more than 1 year outdoor lifetime. Solar Energy Materials & Solar Cells, 92:727-731, 2008. [4] Jeffrey Yang, Arindam Banerjee, and Subhendu Guha. Amorphous silicon based photovoltaics: From earth to the ”final frontier”. Solar Energy Materials & Solar Cells, 78:597-612, 2003. [5] Baoquan Sun, Alp T. Findikoglu, Milan Sykora, Donald J. Werder, and Victor I. Klimov. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon. Nano Letters, 9:1235-1241, 2009. [6] Hyo Joong Lee, Jun-Ho Yum, Henry C. Leventis, Shaik M. Zakeeruddin, Saif A. Haque, Peter Chen, Sang Il Seok, Michael Gratzel, and Md. K. Nazeeruddin. Cdse quantum dot-sensitized solar cells exceeding efficiency 1full-sun intensity. Journal of Physical Chemistry C, 112:11600-11608, 2008. [7] Jean-Michel Nunzi. Organic photovoltaic materials and devices. Comptes Rendus Physique, 3:523-542, 2002. [8] Danuta Wrobel, Aleksandra Siejak, and Przemyslaw Siejak. Photo voltaic and spectroscopic studies of selected halogenated porphyrins for their application in organic solar cells. Solar Energy Materials & Solar Cells, 94:492-500, 2010. [9] Xiao-Feng Wang, Hitoshi Tamiaki, Li Wang, Naoto Tamai, Osamu Kitao, Haoshen Zhou, and Shin ichi Sasaki. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Langmuir, 26:6320-6327, 2010. [10] M. Della Pirriera, J. Puigdollers, C. Voz, M. Stella, J. Bertomeu, and R. Alcubilla. Optoelectronic properties of cupc thin films deposited at different substrate temperatures. Journal of Physics D: Applied Physics, 42:145102, 2009. [11] Wei-Hung Chen, Wen-Yin Ko, Ying-Shiou Chen, Ching-Yuan Cheng, Chi-Ming Chan, and Kuan-Jiuh Lin. Growth of copper phthalocyanine rods on au plasmon electrodes through micelle disruption methods. Langmuir, 26:2191-2195, 2010. [12] Fulvio G. Brunetti, Rajeev Kumar, and Fred Wudl. Organic electronics from perylene to organic photovoltaics: Painting a brief history with a broad brush. Journal of Materials Chemistry, 20:2934-2948, 2010. [13] Huang Zhong Yu and Jun Biao Peng. Performance and lifetime improvement of polymer/fullerene blend photovoltaic cells with a c60 interlayer. Organic Electronics, 9:1022-1025, 2008. [14] Debjit Datta, Vibha Tripathi, Pranjal Gogoi, Suman Banerjee, and Satyendra Kumar. Ellipsometric studies on thin film cupc: C60 blends for solar cell applications. Thin Solid Films, 516:7237-7240, 2008. [15] Holger Spanggaard and Frederik C. Krebs. A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials & Solar Cells, 83:125-146, 2004. [16] L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller. Intrinsic and extrinsic constraints on photoactive. Synthetic Metals, 80:41-58, 1996. [17] Jiangeng Xue, Barry P. Rand, Soichi Uchida, and Stephen R. Forrest. A hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv. Mater., 17:66-71, 2005. [18] Inho Kim, Hanna M. Haverinen, Zixing Wang, Sijesh Madakuni, Younggu Kim, Jian Li, and Ghassan E. Jabbour. Efficient organic solar cells based on planar metallophthalocyanines. Chem. Mater., 21:4256-4260, 2009. [19] C. W. Tang. Two-layer organic photovoltaic cell. Applied Physics Letters, 48:183-185, 1986. [20] Tamotsu Inabe, John G. Gaudiello, Michael K. Moguel, Joseph W. Lyding, Robert L. Burton, William J. McCarthy, Carl R. Kannewurf, and Tobin J. Marks. Cofacial assembly of partially oxidized metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular ”metals”. probing band structure-counterion interactions in conductive [ m( phthalocyaninato) o], macromolecules using nitrosonium oxidants. Journal of the American Chemical Society, 108:7595-7608, 1986. [21] Mi Ouyang, Ru Bai, Lin Chen, Ligong Yang, Mang Wang, and Hongzheng Chen. Highly photoconductive copper phthalocyanine-coated titania nanoarrays via secondary deposition. Journal of Physical Chemistry C, 112:11250- 11256, 2008. [22] Hidetoshi Suzuki, Yusuke Yamashita, Nobuaki Kojima, and Masafumi Yamaguchi. Crystal structures of copper-phthalocyanine on c60(111) surface grown by molecular beam epitaxy. Japanese Journal of Applied Physics, 47:6879- 6882, 2008. [23] Yu-Sheng Hsiao, Wha-TzongWhang, Shich-Chang Suen, Jau-Ye Shiu, and Chih-Ping Chen. Morphological control of cupc and its application in organic solar cells. Nanotechnology, 19:415603, 2008. [24] M. Rusu, J. Gasiorowski, S. Wiesner, N. Meyer, M. Heuken, K. Fostiropoulos, and M.Ch. Lux-Steiner. Fine tailored interpenetrating donor-acceptor mor-phology by ovpd for organic solar cells. Thin Solid Films, 516:7160-7166, 2008. [25] Wen-Yin Ko, Wei-Hung Chen, Shien-Der Tzeng, Shangjr Gwo, and Kuan-Jiuh Lin. Synthesis of pyramidal copper nanoparticles on gold substrate. Chemistry of Materials, 18:6097-6099, 2006. [26] Rui Xiao, Seung Il Cho, Ran Liu, and Sang Bok Lee. Controlled electrochemical synthesis of conductive polymer nanotube structures. Journal of the American Chemical Society, 129:4483-4489, 2007. [27] Yuting Ma, Junwei Di, Xue Yan, Meilian Zhao, Zhejun Lu, and Yifeng Tu. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosensors and Bioelectronics, 24:1480-1483, 2009. [28] Katsuyoshi Hoshino and Tetsuo Saji. Electrochemical formation of an organic thin film by disruption of micelles. Journal of the American Chemical Society, 109:5881-5883, 1987. [29] Yutaka Harima, Kazuo Yamashita, and Tetsuo Saji. Phthalocyanine photoelectrochemical cell prepared by a micelle disruption method. Applied Physics Letters, 52:1542-1543, 1988. [30] H. G. Kubota, J. Muto, and K. M. Itoh. Direct formation of x1-mgpc films by the micelle disruption method. Journal of Materials Science Letters, 15:1475- 1477, 1996. [31] Nabeen K. Shrestha, Hirotaka Kobayashi, and Tetsuo Saji. Organic thin film formation using asymmetric surface-active viologens. Langmuir, 23:1912-1916, 2007. [32] Annabel Wood, Michael Giersig, and Paul Mulvaney. Fermi level equilibration in quantum dot-metal nanojunctions. Journal of Physical Chemistry B, 105:8810-8815, 2001. [33] Manuela Jakob, Haim Levanon, and Prashant V. Kamat. Charge distribution between uv-irradiated tio2 and gold nanoparticles: Determination of shift in the fermi level. Nano Letters, 3:353-358, 2003. [34] Said Barazzouk and Surat Hotchandani. Enhanced charge separation in chlorophyll a solar cell by gold nanoparticles. Journal of Applied Physics, 96:7744- 7746, 2004. [35] Shaowei Chen and Royce W. Murray. Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. Journal of Physical Chemistry B, 103:9996-10000, 1999. [36] Zhi-Yuan Li and Younan Xia. Metal nanoparticles with gain toward singlemolecule detection by surface-enhanced raman scattering. Nano Letters, 10:243-249, 2010. [37] Dong Hyuk Park, Hyun Seung Kim, Mi-Yun Jeong, Yong Baek Lee, Hyun-Jun Kim, Dae-Chul Kim, Jeongyong Kim, and Jinsoo Joo. Significantly enhanced photoluminescence of doped polymer-metal hybrid nanotubes. Advanced Functional Materials, 18:2526-2534, 2008. [38] Tsuyoshi Akiyama, Masato Nakada, Nao Terasakic, and Sunao Yamada. Photocurrent enhancement in a porphyrin-gold nanoparticle nanostructure assisted by localized plasmon excitation. Chemical Communications, pages 395- 397, 2006. [39] M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, H. H. Wang, H. I. Yeh, W. H. Chan, and W. J. Parak. Improvement of conversion efficiency for multijunction solar cells by incorporation of au nanoclusters. Optics Express, 16:15754-15758, 2008. [40] Ying-Shiou Chen. Electrodeposition of Gold Nanoparticles and Copper Phthalocyanine film onto ITO substrate. PhD thesis, Chung-Hsing University, 2008. [41] V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. Journal of the American Chemical Society, 114:5221-5230, 1992. [42] Chang Q. Sun, H. L. Bai, S. Li, B. K. Tay, C. Li, T. P. Chen, and E. Y. Jiang. Length, strength, extensibility, and thermal stability of a auau bond in the gold monatomic chain. Journal of Physical Chemistry B, 108:2162-2167, 2004. [43] V. Ganesh Kumar, A. Nirmala Grace, and K. Pandian. Binding of viologen pendant pyrrole with free and bound gold nanoparticles. Current Science, 88:613-616, 2005. [44] Traci R. Jensen, Michelle Duval Malinsky, Christy L. Haynes, and Richard P. Van Duyne. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. Journal of Physical Chemistry B, 104:10549-10556, 2000. [45] Linda Gunnarsson, Tomas Rindzevicius, Juris Prikulis, Bengt Kasemo, Mikael Kll, Shengli Zou, and George C. Schatz. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. Journal of Physical Chemistry B, 109:1079-1087, 2005. [46] Juan Li, Shuangqing Wang, Shayu Li, Qian Wang, Yan Qian, Xiuping Li, Min Liu, Yi Li, and Guoqiang Yang. One-pot synthesis and self-assembly of copper phthalocyanine nanobelts through a water-chemical route. Inorganic Chemistry, 47:1255-1257, 2008. [47] Ross A. Hatton, Nicholas P. Blanchard, Vlad Stolojan, Anthony J. Miller, and S. Ravi P. Silva. Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films. Langmuir, 23:6424-6430, 2007. [48] H. El Belghiti, T. Pauporte, and D. Lincot. Mechanistic study of zno nanorod array electrodeposition. Physica Status Solidi A: Applications and Materials Science, 205:2360-2364, 2008. [49] Wolfram Gronwald and Hans Robert Kalbitzer. Automated structure determination of proteins by nmr spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 44:33-96, 2004. [50] J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature, 181:662-666, 1958. [51] G. Bao. Mechanics of biomolecules. Journal of the Mechanics and Physics of Solids, 50:2237-2274, 2002. [52] Cornelia Hahn and Martin A. Schwartz. Mechanotransduction in vascular physiology and atherogenesis. Molecular cell Biology, 10:53-62, 2009. [53] J.H. Keyak, A.K. Koyama, A. LeBlanc, Y. Lud, and T.F. Lang. Reduction in proximal femoral strength due to long-duration spaceflight. Bone, 44:449-453, 2009. [54] Diana E. Jaalouk and Jan Lammerding. Mechanotransduction gone awry. Molecular cell Biology, 10:63-73, 2009. [55] Robert H. Christenson. Biochemical markers of bone metabolism: An overview. Clinical Biochemistry, 30:573-593, 1997. [56] Jennifer L. Lucitti, Elizabeth A. V. Jones, Chengqun Huang, Ju Chen, Scott E. Fraser, and Mary E. Dickinson. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development, 134:3317-3326, 2007. [57] Marina E. Chicurel, Christopher S. Chen, and Donald E. Ingber. Cellular control lies in the balance of forces. Current Opinion in Cell Biology, 10:232- 239, 1998. [58] Wenjun Guo and Filippo G. Giancotti. Integrin signalling during tumour progression. Nature Reviews Molecular Cell Biology, 5:816-826, 2004. [59] Andres F. Oberhauser, Piotr E. Marszalek, Harold P. Erickson, and Julio M. Fernandez. Themolecular elasticity of the extracellular matrix protein tenascin. Nature, 393:181-185, 1998. [60] Tomoo Ohashi, Daniel P. Kiehart, and Harold P. Erickson. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectingreen fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 96:2153-2158, 1999. [61] Andre Krammer, Hui Lu, Barry Isralewitz, Klaus Schulten, and Viola Vogel. Forced unfolding of the fibronectin type iii module reveals a tensile molecular recognition switch. Proceedings of the National Academy of Sciences of the United States of America, 96:1351-1356, 1999. [62] Stephen T. Smale and James T. Kadonaga. The rna polymerase ii core promoter. Annual Review of Biochemistry, 72:449-479, 2003. [63] P. J. Hagerman. Flexibility of dna. Ann. Rev. Biophys. Biophys. Chern., 17:265-286, 1988. [64] Carlos Bustamante, Zev Bryant, and Steven B. Smith. Ten years of tension: single-molecule dna mechanics. Nature, 421:423-427, 2003. [65] A. A. Travers and J. M. T. Thompson. An introduction to the mechanics of dna. Philosophical Transactions A, 362:1265-1279, 2004. [66] M. E. Hogan and R. H. Austin. Importance of dna stiffness in protein-dna binding specificity. Nature, 329:263-266, 1987. [67] Noel L. Goddard, Grgoire Bonnet, Oleg Krichevsky, and Albert Libchaber. Sequence dependent rigidity of single stranded dna. Physical Review Letters, 85:2400-2403, 2000. [68] M. Michael Gromiha. Influence of dna stiffness in protein-dna recognition. Journal of Biotechnology, 117:137-145, 2005. [69] Hauke Clausen-Schaumann, Markus Seitz, Rupert Krautbauer, and Hermann E Gaub. Force spectroscopy with single bio-molecules. Current Opinion in Chemical Biology, 4:524-530, 2000. [70] Richard P. Feynman. There's plenty of room at the bottom. Engineering & Science, 23:22, 1960. [71] Richard E. Smalley. Of chemistry, love and nanobots. Scientific American, 285:76-77, 2001. [72] Steven B. Smith, Laura Finzi, and Carlos Bustamante. Direct mechanical measurements of the elasticity of single dna molecules by using magnetic beads. Science, 258:1122-1126, 1992. [73] A. Ashkin and J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235:1517-1520, 1987. [74] Steven B. Smith, Yujia Cui, and Carlos Bustamante. Overstretching b-dna: the elastic response of individual double-stranded and single-stranded dna molecules. Science, 271:795-799, 1996. [75] Akihiko Ishijima, Hiroaki Kojima, Takashi Funatsu, Makio Tokunaga, Hideo Higuchi, Hiroto Tanaka, and Toshio Yanagida. Simultaneous observation of individual atpase and mechanical events by a single myosin molecule during interaction with actin. Cell, 92:161-171, 1998. [76] E. Evans, K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophysical Journal, 68:2580-2587, 1995. [77] Ernst-Ludwig Florin, Vincent T. Moy, and Hermann E. Gaub. Adhesion forces between individual ligand-receptor pairs. Science, 264:415-417, 1994. [78] Matthias Rief, Mathias Gautel, Filipp Oesterhelt, Julio M. Fernandez, and Hermann E. Gaub. Reversible unfolding of individual titin immunoglobulin domains by afm. Science, 276:1109-1112, 1997. [79] A. Ashkin, J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330:769-771, 1987. [80] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 24:156-159, 1970. [81] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11:288-290, 1986. [82] Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental obervation of optically trapped atoms. Physical Review Letters, 57:314-317, 1986. [83] Steven B. Smith, Yujia Cui, and Carlos Bustamante. Optical-trap force transducer that operates by direct measurement of light momentum. Methods in Enzymology, 361:134-162, 2003. [84] Koen Visscher, Steven P. Gross, and Steven M. Block. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2:1066-1076, 1996. [85] C. Bustamante, Y. R. Chemla, and J. R. Moffitt. In single-molecule techniques: a laboratory manual. Cold Spring Harbor, NY, 2008. [86] Remus T. Dame, Maarten C. Noom, and Gijs J. L.Wuite. Bacterial chromatin organization by h-ns protein unravelled using dual dna manipulation. Nature, 444:387-390, 2006. [87] Zev Bryant, Michael D. Stone, Jeff Gore, Steven B. Smith, Nicholas R. Cozzarelli, and Carlos Bustamante. Structural transitions and elasticity from torque measurements on dna. Nature, 424:338-341, 2003. [88] G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Physical Review Letters, 56:930-933, 1986. [89] Y. Martin, C. C. Williams, and H. K. wickramasinghe. Atomic force microscope-force mapping and proifiling on a sub 100a scale. J. Appl. Phys., 61:4723-4729, 1987. [90] O. M. Leung and M. C. GOH. Orientational ordering of polymers by atomic force microscope tip-surface interaction. Science, 255:64-66, 1992. [91] Y. Kim and C. M. Lieber. Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale. Science, 257:375-377, 1992. [92] Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, and Chad A. Mirkin. Dip-pen nanolithography. Science, 283:661-663, 1999. [93] T. Junno, K. Deppert, L. Montelius, and L. Samuelson. Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett., 66:3627-3629, 1995. [94] Piotr E. Marszalek, Hui Lu, Hongbin Li, Mariano Carrion-Vazquez, Andres F. Oberhauser, Klaus Schulten, and Julio M. Fernandez. Mechanical unfolding intermediates in titinmodules. Nature, 402:100-103, 1999. [95] Jan Liphardt, Bibiana Onoa, Steven B. Smith, Ignacio Tinoco Jr., and Carlos Bustamante. Reversible unfolding of single rna molecules by mechanical force. Science, 292:733-737, 2001. [96] Jeffrey L. Hutter and John Bechhoefer. Calibration of atomic-force microscope tips. Review of Scientific Instruments, 64:1868-1873, 1993. [97] Hongbin Li, Matthias Rief, Filipp Oesterhelt, and Hermann E. Gaub. Singlemolecule force spectroscopy on xanthan by afm. Advanced Materials, 3:316- 319, 1998. [98] Mathias Gautel and David Goulding. A molecular map of titinkonnectin elasticity reveals two different mechanisms acting in series. FEBS Letters, 385:11- 14, 1996. [99] Wolfgang A. Linke, Marc Ivemeyer, Nicoletta Olivieri, Bernhard Kolmerer, J. Caspar Ruegg, and Siegfried Labeit. Towards a molecular understanding of the elasticity of titin. Journal of Molecular Biology, 261:62-71, 1996. [100] C. Jarzynski. Nonequilibrium equality for free energy differences. Physical Review Letters, 78:2690-2693, 1997. [101] Jan Liphardt, Sophie Dumont, Steven B. Smith, Ignacio Tinoco Jr., and Carlos Bustamante. Equilibrium information from nonequilibrium measurements in an experimental test of jarzynski's equality. Science, 296:1832-1835, 2002. [102] Paul C. Hiemenz and Thimothy P. Lodge. Polymer chemistry. CRC Press, 2007. [103] Mariano Carrion-Vazquez, Andres F. Oberhauser, Thomas E. Fisher, Piotr E. Marszalek, Hongbin Li, and Julio M. Fernandez. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Progress in Biophysics & Molecular Biology, 74:63-91, 2000. [104] Carlos Bustamante, Yann R. Chemla, Nancy R. Forde, and David Izhaky. Mechanical processes in biochemistry. Annual Review of Biochemistry, 73:705- 748, 2004. [105] D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco Jr, and C. Bustamante. Verification of the crooks fluctuation theorem and recovery of rna folding free energies. Nature, 437:231-234, 2005. [106] Nolan C. Harris, Yang Song, and Ching-Hwa Kiang. Experimental free energy surface reconstruction from single-molecule force spectroscopy using jarzynski's equality. Physical Review Letters, 99:068101, 2007. [107] H. P. Erickson. Reversible unfolding of fibronectin type iii and immunoglobulin domains provides the strctural basis for stretch and elasticity of titin and fibronectin. Proceedings of the National Academy of Sciences of the United States of America, 91:10114-10118, 1994. [108] A. Soteriou, A. Clarke, S. Martin, and J. Trinick. Titin folding energy and elasticity. Proceedings: Biological Sciences, 254:83-86, 1993. [109] Philip M. Williams, Susan B. Fowler, Robert B. Best, Jose Luis Toca-Herrera, Kathryn A. Scott, Annette Steward, and Jane Clarke. Hidden complexity inthe mechanical properties of titin. Nature, 422:446-449, 2003. [110] Jane Clarke, Ernesto Cota, Susan B Fowler, and Stefan J Hamill. Folding studies of immunoglobulin-like b-sandwich proteins suggest that they share a common folding pathway. Structure, 7:1145-1153, 1999. [111] Matthias Rief, Hauke Clausen-Schaumann, and Hermann E. Gaub. Sequencedependent mechanics of single dna molecules. Nature Struct. Biol., 6:346-349, 1999. [112] Ulrich Gerland, Ralf Bundschuh, and Terence Hwa. Mechanically probing the folding pathway of single rna molecules. Biophysical Journal, 84:2831-2840, 2003. [113] Michael M. Cox. Motoring along with the bacterial reca protein. Nature Reviews Molecular Cell Biology, 8:127-138, 2007. [114] A. Stasiak, E. Di Capua, and Th. Koller. Elongation of duplex dna by reca protein. Journal of Molecular Biology, 151:557-564, 1981. [115] Kathi Dunn, Susan Chrysogelos, and Jack Griffith. Electron microscopic visualization of reca-dna filaments: evidence for a cyclic extension of duplex dna. Cell, 28:757-765, 1982. [116] C. R. Cantor and P. R. Schimmel. Biophysical chemistry: the behavior of biological macromolecules, volume Part III. Freeman, New York, 1980. [117] Cornelis S. M. Olsthoorn, Lein J. Bostelaar., Jacques H. van Boom, and Cornehs Altona. Conformational characteristics of the trinucleoside diphosphate dapdapda and its constituents from nuclear magnetic resonance and circular dichroism studies extrapolation to the stacked conformers. European Journal of Biochemistry, 112:95-110, 1980. [118] A. Buhot and A. Halperin. Effects of stacking on the configurations and elasticity of single-stranded nucleic acids. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 70:020902, 2004. [119] Changhong Ke, Michael Humeniuk, Hanna S-Gracz, and Piotr E. Marszalek. Direct measurements of base stacking interactions in dna by single-molecule atomic-force spectroscopy. Physical Review Letters, 99:018302, 2007. [120] Yeonee Seol, Gary M. Skinner, and Koen Visscher. Stretching of homopolymeric rna reveals single-stranded helices and base-stacking. Physical Review Letters, 98:158103, 2007. [121] Wilma K. Olson and Joel L. Sussman. How flexible is the furanose ring? 1. a comparison of experimental and theoretical studies. Journal of the American Chemical Society, 104:270-278, 1982. [122] Julio M. Fernandez and Hongbin Li. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science, 303:1674-1678, 2004. [123] Ciro Cecconi, Elizabeth A. Shank, Carlos Bustamante, and Susan Marqusee. Direct observation of the three-state folding of a single protein molecule. Science, 309:2057-2060, 2005. [124] Claudia Danilowicz, Vincent W. Coljee, Cedric Bouzigues, David K. Lubensky, David R. Nelson, and Mara Prentiss. Dna unzipped under a constant force exhibits multiple metastable intermediates. Proceedings of the National Academy of Sciences of the United States of America, 100:1694-1699, 2003. [125] K. Hatch, C. Danilowicz, V. Coljee, and M. Prentiss. Direct measurements of the stabilization of single-stranded dna under tension by single-stranded binding proteins. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 76:021916, 2007. [126] Peter E. Nielsen, Michael Egholm, Rolf H. Berg, and Ole Buchardt. Sequenceselective recognition of dna by strand displacement with a thymine-substituted polyamide. Science, 254:1497-1500, 1991. [127] Pernilla Wittung, Peter E. Nielsen, Ole Buchardt, Micheal Egholm, and Bengt Norden. Dna-like double helix formed by peptide nucleic acid. Nature, 368:561-563, 1994. [128] Daniel H. Shain, Mauricio X. Zuber, and Toomas Neuman. Transcription initiation from a poly(da) tract. Nucleic Acids Research, 26:1019-1025, 1998. [129] Zhaozi Lv, Hui Wei, Bingling Liab, and Erkang Wang. Colorimetric recognition of the coralyne-poly(da) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system. Analyst, 134:1647-1651, 2009. [130] Guangtao Song, Cuie Chen, Xiaogang Qu, Daisuke Miyoshi, Jinsong Ren, and Naoki Sugimoto. Small-molecule-directed assembly: A gold nanoparticlebased strategy for screening of homo-adenine dna duplex binders. Advanced Materials, 20:706-710, 2008. [131] Michel Grandbois, Wolfgang Dettmann, Martin Benoit, and Hermann E. Gaub. Affinity imaging of red blood cells using an atomic force microscope. Journal of Histochemistry and Cytochemistry, 48:719-724, 2000. [132] Piotr Szymczak and Harald Janovjak. Periodic forces trigger a complex mechanical response in ubiquitin. Journal of Molecular Biology, 390:443-456, 2009. [133] Oliver Braun, Andreas Hanke, and Udo Seifert. Probing molecular free energy landscapes by periodic loading. Physical Review Letters, 93:158105, 2004. [134] G. Lee, G. G. Muramoto, J. P. Chute, and P. E. Marszalek. Nanomechanical fingerprints of gamma radiation damage to dna. Journal of Nanoscience and Nanotechnology, in press, 2009. [135] Yong Jiang, Changhong Ke, Piotr A. Mieczkowski, and Piotr E. Marszalek. Detecting ultraviolet damage in single dna molecules by atomic force microscopy. Biophysical Journal, 93:1758-1767, 2007. [136] Rupert Krautbauer, Stefan Fischerlnder, Stephanie Allen, and Hermann E. Gaub. Mechanical fingerprints of dna drug complexes. Single Molecules, 3:97-103, 2002.
摘要: 本畢業論文有兩個研究主題: (1) 製備柱狀銅花青於金奈米粒子薄膜上與其應用 (2) 生物分子之單分子力學量測。 以銅花青(copper phthalocyanine)及碳六十為材料的太陽能電池是目前有機薄膜太陽能電池中光轉換效率最高的,而許多以提高此太陽能電池效率的研究也一直在進行當中,其中有許多報告指出一維結構的銅花青將可有效的降低激子進行再結合(recombination)的比例而提高光電流的產生。在此實驗中,我們嘗試使用便宜且快速的電化學合成法來置備一維結構的銅花青,並在銅花青和導電玻璃的介面中插入一層金奈米粒子,希望藉著金屬奈米粒子特殊的電性來提高銅花青的光電流,而由初步光電流的量測實驗,我們證實了此方法的可行性。 單分子操控技術利用精準的位移控制系統及微小力的量測能力,可對單一分子進行位移及形變,而這項技術已被應用在許多的學術研究上,本篇論文討論主題為使用單分子操控技術對三種不同的生物分子進行單分子力學性質的研究:肌肉蛋白、雙股螺旋去氧核醣核酸(dsDNA)及單股螺旋去氧核醣核酸(ssDNA)。在肌肉蛋白的研究中,我們對肌肉蛋白中負責維持肌肉彈性的I27蛋白進行力譜的量測,並嘗試建構其拉伸進而去摺疊(unfolding)過程的自由能變化曲線,而此自由能變化曲線的可信度在和相關文獻所得到的數據比對之後獲得證明。在雙股螺旋去氧核醣核酸的研究中,我們可以在力譜中看到雙股螺旋結構在受力被解開成單股時,其相變化的過程,並從中得到當雙股螺旋去氧核醣核酸在生物體內進行各種生物反應時可能的結構變化。在單股螺旋去氧核醣核酸的研究中,藉由量測力譜的過程,我們可以直接量測到鹼基間去堆積(unstacking)的弱作用力,並利用力鉗(force clamp)量測模式,第一次追蹤到此一去堆積的過程。
Two topics are included in this thesis: (1) Fabrication of copper phthalocyanine (CuPc) rods on gold nanoparticle (AuNP) films and its application in organic solar cells. (2) Mechanical properties of biomolecules studies using atomic force microscopy. To improve the performance of CuPc-based photovoltaic devices, we tried to synthesize rod-like CuPc, which was thought to be beneficial to increase the interfacial area, and incorporate AuNP films, which have special optical and electric properties. And we fabricated this cell using electrochemical deposition techniques coupled with micelle disruption methods to provide a cheaper and more rapid way to product organic photovoltaic devices. The preliminary results of photocurrent measurements showed that AuNP films indeed increase the photocurrent of CuPc comparing with the CuPc photovoltaic cell without AuNP films. Single molecule manipulation technique, which can control the movement with angstrom-level accuracy and apply force with piconewton precision, was used to study the mechanical properties of titin proteins, double-stranded deoxyribonucleic acid (dsDNA) and single-stranded deoxyribonucleic acid (ssDNA). At the case study of titin proteins, the force spectrum of a commercial engineered recombinant protein consisting of eight repeated muscle protein immunoglobulin-like domain I27 was obtained. And using Jarzynski''s equation, we try to reconstruct the free energy surface of stretching and unfolding muscle proteins. The thermodynamic properties extracted from the free energy were consistent with ensemble experiments data. At the case study of dsDNA, biological information hidden under its force spectrum, which showed B-S transition and double helical structure melting patterns, was discussed. At the case study of ssDNA, the force spectrum of synthetic ssDNA polydeoxyadenylate (poly(dA)) was obtained. The pattern of base unstacking induced by the mechanical force can be directrly observed in the force spectrum. And we also found that the unstacking process conducted multiple pathways, and "hopping" between these pathways could be observed during constant force measurements.
URI: http://hdl.handle.net/11455/16787
其他識別: U0005-0608201013140500


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。