Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16803
標題: 二氧化鈦奈米材料之製備及其在染料敏化太陽能電池的應用
Synthesis of TiO2 nanomaterials and it̕s application on DSSCs
作者: 顏吟赬
Yen, Yin-Cheng
關鍵字: titanium dioxide
二氧化鈦
dye-sensitized solar cell
染料敏化太陽能電池
出版社: 化學系所
引用: [1]J. J. Loferski, Progress in Photovoltaics: Research and Applications 1993, 1, 67. [2]M. Gratzel, Nature 2001, 414, 338. [3]黃建昇, 工業材料雜誌 2003, 203, 150. [4]郭明村, 工業材料雜誌 2003, 203, 138. [5]KRI, 2005, 8. [6]N. S. Lewis, Science 2007, 315, 798. [7]A. STI. [8]J. N. ü. d. Moser, Monatsh. Chem. 1887, 8, 373. [9]H. a. T. Gerischer, H., Ber. Bunsenges. Phys. Chem. 1968, 72, 437. [10]馮憲平. [11]B. O''Regan, M. Gratzel, Nature 1991, 353, 737. [12]a)K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, Journal of Photochemistry and Photobiology a-Chemistry 2002, 148, 57; b)N. G. Park, M. G. Kang, K. S. Ryu, K. M. Kim, S. H. Chang, Journal of Photochemistry and Photobiology a- Chemistry 2004, 161, 105; c)K. Sayama, H. Sugihara, H. Arakawa, Chemistry of Materials 1998, 10, 3825. [13]A. Hagfeldt, M. Graetzel, Chemical Reviews 1995, 95, 49. [14]S.-Y. D. Fan-Tai Kong, and Kong-JiaWang, Advances in OptoElectronics 2007, 2007, 75384. [15]D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Acs Nano 2008, 2, 1113. [16]M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, Journal of the Electrochemical Society 2003, 150, G488. [17]S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, S. Yoshikawa, Journal of Photochemistry and Photobiology a- Chemistry 2004, 164, 145. [18]Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, Physical Chemistry Chemical Physics 2005, 7, 4157. [19]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Letters 2006, 6, 215. [20]I. C. Flores, J. N. de Freitas, C. Longo, M. A. De Paoli, H. Winnischofer, A. F. Nogueira, Journal of Photochemistry and Photobiology a-Chemistry 2007, 189, 153. [21]D. A. Wang, B. Yu, F. Zhou, C. W. Wang, W. M. Liu, Materials Chemistry and Physics 2009, 113, 602. [22]D. Kim, A. Ghicov, S. P. Albu, P. Schmuki, Journal of the American Chemical Society 2008, 130, 16454. [23]A. Fujishima, K. Honda, Nature 1972, 238, 37. [24]a)G. L. Amy L Linsebigler, John T Yates Chemical Reviews 1995, 95, 735; b)S. L. H. Andrew Mills, J. Photochem. Photobiol. A:Chemistry 1997, 157, 1. [25]a)Y. Bessekhouad, D. Robert, J. V. Weber, Journal of Photochemistry and Photobiology a-Chemistry 2003, 157, 47; b)P. Liu, J. Bandara, Y. Lin, D. Elgin, L. F. Allard, Y. P. Sun, Langmuir 2002, 18, 10398; c)G. Oskam, A. Nellore, R. L. Penn, P. C. Searson, Journal of Physical Chemistry B 2003, 107, 1734; d)H. Z. Zhang, J. F. Banfield, Chemistry of Materials 2005, 17, 3421. [26]a)M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, Journal of Physical Chemistry B 2002, 106, 10674; b)S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, W. I. Lee, Chemistry of Materials 2003, 15, 3326; c)S. M. Juan Yang, José Maria F. Ferreira, Materials Science Forum 2004, 455 - 456, 556. [27]a)K. T. Lim, H. S. Hwang, W. Ryoo, K. P. Johnston, Langmuir 2004, 20, 2466; b)J. Lin, Y. Lin, P. Liu, M. J. Meziani, L. F. Allard, Y. P. Sun, Journal of the American Chemical Society 2002, 124, 11514; c)D. B. Zhang, L. M. Qi, J. M. Ma, H. M. Cheng, Journal of Materials Chemistry 2002, 12, 3677. [28]a)X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature 2005, 437, 121; b)C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, H. J. Seo, Journal of Crystal Growth 2003, 257, 309. [29]a)陳慧英、黃定加、朱秦億, 化工技術 1999, 7, 152; b)張立 德、牟季美, 應用物理學叢書 2001. [30]林鴻明. [31]S. Iijima, Nature 1991, 354, 56. [32]a)H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, Journal of the American Chemical Society 2005, 127, 2378; b)P. Levy, A. G. Leyva, H. E. Troiani, R. D. Sanchez, Applied Physics Letters 2003, 83, 5247; c)F. Krumeich, H. J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper, Journal of the American Chemical Society 1999, 121, 8324; d)T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 1998, 14, 3160. [33]D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Advanced Materials 2006, 18, 2807. [34]P. Hoyer, Langmuir 1996, 12, 1411. [35]a)S. Bauer, S. Kleber, P. Schmuki, Electrochemistry Communications 2006, 8, 1321; b)O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes, Advanced Materials 2003, 15, 624. [36]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Advanced Materials 1999, 11, 1307. [37]H. H. Ou, S. L. Lo, Separation and Purification Technology 2007, 58, 179. [38]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, Journal of Physical Chemistry B 2003, 107, 8981. [39]J. H. Wu, Z. Lan, S. C. Hao, P. J. Li, J. M. Lin, M. L. Huang, L. Q. Fang, Y. F. Huang, Pure and Applied Chemistry 2008, 80, 2241. [40]M. Gratzel, Progress in Photovoltaics 2000, 8, 171. [41]J. H. Wu, S. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. Sato, Advanced Functional Materials 2007, 17, 2645. [42]F. Cao, G. Oskam, P. C. Searson, The Journal of Physical Chemistry 1995, 99, 17071. [43]A. R. S. Priya, A. Subramania, Y. S. Jung, K. J. Kim, Langmuir 2008, 24, 9816. [44]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 1998, 395, 583. [45]M.-S. Kang, K.-S. Ahn, J.-W. Lee, Y. S. Kang, Journal of Photochemistry and Photobiology A: Chemistry 2008, 195, 198. [46]X. Shen, W. Xu, J. Xu, G. Liang, H. Yang, M. Yao, Solid State Ionics 2008, 179, 2027. [47]N. G. Park, J. van de Lagemaat, A. J. Frank, Journal of Physical Chemistry B 2000, 104, 8989. [48]N. W. G. G. P. Scherrer, Math-Phys. Kl. 1918, 2, 96. [49]U. Balachandran, N. G. Eror, Journal of Solid State Chemistry 1982, 42, 276. [50]D. H. E. K.S.W. Sing, R.A.W. Haul, L. Moscou, R.A. Pierotti, J.Rouquerol and T. Siemieniewska., Pure & Appl. Chem. 1985, 57, 603. [51]a)R. Z. Ma, K. Fukuda, T. Sasaki, M. Osada, Y. Bando, Journal of Physical Chemistry B 2005, 109, 6210; b)W. K. A.Nakahira, M.Tamai,T.Isshiki,K.Nishio, J. Mater. Sci. 2004, 39, 4239; c)Q. Chen, G. H. Du, S. Zhang, L. M. Peng, Acta Crystallographica Section B-Structural Science 2002, 58, 587; d)Q. Chen, W. Z. Zhou, G. H. Du, L. M. Peng, Advanced Materials 2002, 14, 1208; e)X. M. Sun, Y. D. Li, Chemistry-a European Journal 2003, 9, 2229; f)Z. Y. Yuan, B. L. Su, Colloids and Surfaces a- Physicochemical and Engineering Aspects 2004, 241, 173; g)C. C. Tsai, H. S. Teng, Chemistry of Materials 2004, 16, 4352; h)Q. H. Zhang, L. A. Gao, J. Sun, S. Zheng, Chemistry Letters 2002, 226; i)D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, Journal of Materials Chemistry 2004, 14, 3370; j)D. S. Seo, J. K. Lee, H. Kim, Journal of Crystal Growth 2001, 229, 428. [52]B. T. a. Y. Wu, J. Phys. Chem. B 2006, 110, 15932. [53]a)L. Y. Han, N. Koide, Y. Chiba, T. Mitate, Applied Physics Letters 2004, 84, 2433; b)K. M. Lee, V. Suryanarayanan, J. H. Huang, K. R. J. Thomas, J. T. Lin, K. C. Ho, Electrochimica Acta 2009, 54, 4123; c)M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, S. Isoda, Journal of Physical Chemistry B 2006, 110, 13872; d)Q. Wang, J. E. Moser, M. Gratzel, Journal of Physical Chemistry B 2005, 109, 14945. [54]H. Y. Zhu, X. P. Gao, Y. Lan, D. Y. Song, Y. X. Xi, J. C. Zhao, Journal of the American Chemical Society 2004, 126, 8380. [55]H. G. Yu, J. G. Yu, B. Cheng, Journal of Molecular Catalysis a-Chemical 2006, 253, 99.
摘要: 在此篇論文中,成功製備出二氧化鈦奈米粒子、二氧化鈦奈米管,以TEM與SEM觀察其形貌,XRD與Raman鑑定其晶型,最後,結合非揮發性電解液,應用於染料敏化太陽能電池上,探討不同電極結構在染料敏化太陽能電池上的影響與染料敏化太陽能電池長期的穩定性。 實驗結果發現,適量添加二氧化鈦奈米管於二氧化鈦奈米粒子中(體積比為1/0.1時),可以將染料敏化太陽能電池的光電轉換效率提高17%,其光電轉換效率為2.14%,隨著二氧化鈦奈米管添加量的增加,會造成二氧化鈦薄膜的龜裂,而使光電轉換效率下降。 使用非揮發性電解液於染料敏化太陽能電池,於60天後其光電轉換效率、短路電流與開路電壓都些微上升,具有很好的穩定性。
TiO2-based FTO electrodes involving nanoparticles, nanotubes and whisker-like network have been prepared. The morphology was examined by high resolution transmission electron microscope (HR-TEM) and Field Emission Scanning Electron Microscope (FE-SEM). Their crystalline structure was evaluated by X-Ray diffraction and Raman spectroscopy. These TiO2-based FTO electrodes were then assembled with non-volatilize electrolyte for DSSCs ( dye sensitized solar cells ) . The effects of electrodes and the long time stability for DSSCs were studied. A mixture ratio of 1/0.1 (in v/v) of TiO2 nanoparticles/nanotubes was the best composition for TiO2-based FTO electrodes, showing the increasing of efficiency by 17% at compared to full TiO2 nanoparticles. Upon the large ratio of TiO2 nanotubes, the TiO2-based films which had leaded to decease the efficiency. After 60 days, the efficiency (η)、open-circuit voltages (Voc) and short-circuit densities (Jsc) was increased, indicating that DSSCs with the non-volatilize electrolyte had long time stability .
URI: http://hdl.handle.net/11455/16803
其他識別: U0005-1308201016370000
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.