Please use this identifier to cite or link to this item:
標題: Green Analytical Methodologies for the Rapid Analysis of Organochlorine Compounds in Aqueous Samples using Microwave Assisted Graphene and Polymeric Hollow Fiber based Micro-Extraction Techniques Coupled with Gas Chromatography
作者: 庫碼
Ponnusamy, Vinoth Kumar
關鍵字: 綠色快速分析方法
Green analytical methodology
Gas Chromatography
Graphene nanosheets
Hollow fiber
Microwave assisted
micro-extraction techniques
Organo-chlorine compounds
出版社: 化學系所
引用: [1] P. T. Anastas, Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem. 29 (1999) 167-175. [2] M. Koel, M. Kaljurand, Applications of the principles of green chemistry in analytical chemistry. Pure Appl. Chem. 78 (2006) 1993-2002. [3] W. Wardencki, J. Curyło, J. Namieśnik, Green Chemistry-Current and Future Issues. Pol. J. Environ.Stud. 4 (2005) 389-399. [4] M. Tobiszewski, A. Mechlinska, B. Zygmunt, J. Namiesnik. Green analytical chemistry in sample preparation for determination of trace organic pollutants. Trends Anal. Chem. 28 (2009) 943-951. [5] P. T. Anastas, J. C.Warner, Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998. [6] M. De la Guardia, S. Armenta, Ideas for a Change of Mentality and Practices-In Comprehensive Analytical Chemistry, Green Analytical Chemistry. 57 (2011) 207-218. [7] M. Tobiszewski, A. Mechlinska, J. Namiesnik. Green analytical chemistry theory and practice. Trends Anal. Chem. 28 (2009) 943-951. [8] S. Armenta, S. Garrigues, M. de la Guardia. Green analytical chemistry. Trends Anal. Chem. 27 (2008) 497-511. [9] M. Koel, M. Kaljurand, Green Analytical Chemistry, Royal Society of Chemistry (2010) 332. [10] M. Koel, M. Kaljurand, Recent Advancements on Greening Analytical Separation. Critical Reviews in Analytical Chemistry. 41 (2011) 1, 2-20. [11] J. Curyło, W. Wardencki, J. Namiesnik, Green Aspects of Sample Preparation - a Need for Solvent Reduction. Pol. J. Environ. Stud. 16 (2007) 5. [12] J. Dean, Extraction Methods for Environmental Analysis. New York: John Wiley (1998). [13] F. Cantwell, M. Losier, In Sampling and Sample Preparation for Field and Laboratory. J. Pawliszyn, Ed. Amsterdam: Elsevier (2002) . [14] J. Namieśnik, W. Wardencki, Solventless Sample Preparation Techniques in Environmental Analysis. J. High Resol. Chromatogr. 23 (2000) 297-304. [15] C. J.Welch, N. Wu, M. Biba, R. Hartman, T. Brkovic, X. Gong, R. Helmy, W. Schafer, J. Cuff, Z. Pirzada, L. Zhou, Greening analytical chromatography. TrAC Trends Anal. Chem. 29 (2010) 667-680. [16] P. Sandra, A. Pereira, F. David, M. Dunkle, C. Brunelli, Green Chromatography (Part 2): The Role of GC and SFC, LC-GC Eur. (2010) 23. [17] H. Y. Xie; Y. Z. He, Green analytical methodologies combining liquid phase micro-extraction with capillary electrophoresis. TrAC Trends Anal. Chem. 29 (2010) 629- 635. [18] W. Wardencki, J. Namiesnik, Some remarks on gas chromatographic challenges in the context of green analytical chemistry. Polish J. Environ. Studies. 11 (2002) 185-187. [19] C. A. Cramers, H.-G. Jannssen, M. M. Van Deurse, P. A. Leclerc, High-speed gas chromatography: an overview of various concepts. J. Chromatogr. A 856 (1999) 315-329. [20] R. Sacks, H. Smith, M. Nowak, High-speed gas chromatography. Anal. Chem. 70 (1998) 29A-37. [21] J. Pawliszyn, H. L. Lord, Fundamental extraction techniques. Handbook of Sample Preparation. New York: John Wiley (2010). [22] F. Pena-Pereira, I. Lavilla, C. Bendicho, Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends Anal. Chem. 29 (2010) 617-628. [23] M. Tobiszewski, A. Mechlinska, J. Namiesnik. Green analytical chemistry-theory and practice. Chem. Soc. Rev. 39 (2010) 2869-2878. [24] W. Wardencki, J. Curyło, J. Namieśnik. Trends in solventless sample preparation techniques for environmental analysis. J. Biochem. Biophys. Methods. 70 (2007) 275 - 288. [25] J. Aufartova, C. Mahugo-Santana, Z. Sosa-Ferrera, Jose J. Santana-Rodriguez, L. Novakova, P. Solich. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: An overview. Anal. Chim. Acta. 704 (2011) 33-46. [26] M. T. Tena, J. D. Carrillo. Multiple solid-phase microextraction: Theory and applications. TrAC Trends Anal. Chem. 26 (2007) 206-214. [27] A. Jain, K. K. Verma, Recent advances in applications of single drop microextraction: A review Anal. Chim. Acta. 706 (2011) 37-65. [28] J. Pawliszyn, Solid Phase Microextraction, Theory and Practice. New York: Wiley. (1997) 44 - 47. [29] J. Pawliszyn, Handbook of solid phase microextraction. Chemical Industry Press of China, (2009) 406. [30] H. Lord, J. Pawliszyn, Evolution of solid-phase microextraction technology. J. Chromatogr. A. 885 (2000) 153-193. [31] J. Pawliszyn, Applications of solid phase microextraction. RSC Chromatography Monographs, (1999) 674. [32] Z. Zhang, J. Poerschmann, J. Pawliszyn, Direct solid phase microextraction of complex aqueous samples with hollow fiber membrane protection. Anal. Commun. 33 (1996) 129 - 131. [33] T. Gorecki, X. Yu, J. Pawliszyn, Theory of analyte extraction by selected porous polymer SPME fibres. Analyst, 124 (1999) 643 - 649. [34] T. Gorecki, J. Pawliszyn, The effect of sample volume on quantitative analysis by SPME. Part I: Theoretical considerations. Analyst, 122 (1997) 1079 - 1086. [35] Z. Zhang, J. Pawliszyn, Headspace solid phase microextraction. Anal. Chem. 65 (1993) 1843 - 1852. [36] J. Ai, Solid phase microextraction for quantitative analysis in non-equilibrium situations. Anal. Chem. 69 (1997)1230 - 1236. [37] J. Ai, Headspace solid phase microextraction. Dynamics and quantitative analysis before reaching partition equilibrium. Anal. Chem. 69 (1997) 3260 - 3266. [38] D. Louch, S. Motlagh, J. Pawliszyn, Extraction dynamics of organic compounds from water using liquid - coated fused silica fibres. Anal. Chem. 64 (1992) 1187 - 1199. [39] H. Kataoka, Automated sample preparation using in-tube solid-phase microextraction and its application - a review. Anal. Bioanal. Chem. 373 (2002) 31-45. [40] M. A. Jochmann, X. Yuan, B. Schilling, T. C. Schmidt. In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples. J. Chromatogr. A, 1179 (2008) 96-105. [41] E. Baltussen, P. Sandra, F. David, C. Cramers, Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J. Microcolumn Sep. 11 (1999)737-47. [42] H. Bagheri, A. Salemi, Coupling of a modified in-tube solid phase microextraction technique with high performance liquid chromatography-fluorescence detection for the ultra-trace determination of polycyclic aromatic hydrocarbons in water samples. Chromatographia. 59 (2004) 501-5. [43] S. Risticevi, H. Vadoud, N. D. Vuckovic, J. Pawliszyn, Recent developments in solid-phase microextraction. Anal. Bioanal. Chem. 393 (2009) 781-795. [44] G. Ouyang, J. Pawliszyn, SPME in environmental analysis. Anal. Bioanal. Chem. 386 (2006)1059-1073. [45] E. Psillakis,N. Kalogerakis, Developments in liquid-phase microextraction. Trends Anal Chem. 22 (2003) 565-74. [46] H. Liu, P. K. Dasgupta. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem. 68 (1996) 1817-21. [47] M. A. Jeannot, F. F. Cantwell, Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Anal Chem. 69 (1997) 235-9. [48] M. Ma, F. F. Cantwell, Solvent micro-extraction with simultaneous back extraction for sample cleanup and pre-concentration: quantitative extraction. Anal Chem. 70 (1998) 3912-9. [49] Y. He, H. K. Lee. Liquid-phase micro-extraction in a single drop of organic solvent by using a conventional microsyringe. Anal Chem. 69 (1997) 4634-40. [50] A. Sarafraz-Yazdi, A. Amiri, Liquid-phase microextraction, TrAC Trends Anal. Chem. 29 (2010) 1-14. [51] E. Psillakis, N. Kalogerakis, Developments in single-drop microextraction. TrAC. Trends Anal. Chem. 21 (2002) 53-63. [52] T. S. Ho, S. Pedersen-Bjergaard, K.E. Rasmussen, Recovery, enrichment and selectivity in liquid-phase microextraction. Comparison with conventional liquid-liquid extraction. J. Chromatogr. A, 963 (2002) 3-17. [53] K. E. Rasmussen, S. Pedersen-Bjergaard. Developments in hollow fiber based liquid-phase micro-extraction. Trends Anal. Chem. 23 (2004) 1-10. [54] S. Pedersen-Bjergaard, T. S. Ho, K. E. Rasmussen. Fundamental studies on selectivity in 3-phase liquid-phase micro-extraction (LPME) of basic drugs. J. Sep. Sci. 25 (2002) 141-6. [55] L. Zhao, H. K. Lee, Liquid-phase micro-extraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry. Anal. Chem. 74 (2002) 2486-92. [56] L. Hou, H. K. Lee. Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons. J. Chromatogr. A, 976 (2002) 377-85. [57] H. G. Ugland, M. Krogh, K. E. Rasmussen. Liquid-phase micro-extraction as a sample preparation technique prior to capillary gas chromatographic—determination of benzodiazepines in biological matrices. J. Chromatogr. B. 749 (2000) 85-92. [58] S. Pedersen-Bjergaard, T. S. Ho, K. E. Rasmussen. Fundamental studies on selectivity in 3-phase liquid-phase micro-extraction (LPME) of basic drugs. J. Sep. Sci. 25 (2002) 141-6. [59] G. Shen, H. K. Lee. Hollow fiber-protected liquid-phase micro-extraction of triazine herbicides. Anal Chem. 74 (2002) 648-54. [60] L. Hou, H. K. Lee. Dynamic three-phase micro-extraction as a sample preparation technique prior to capillary electrophoresis. Anal. Chem. 75 (2003) 2784-9. [61] X. Jiang, H. K. Lee, Solvent Bar Microextraction. Anal. Chem. 76 (2004) 5591-5596. [62] L. Zhao, H. K. Lee. Application of static liquid-phase micro-extraction to the analysis of organochlorine pesticides in water. J. Chromatogr. A. 919 (2001) 381-8. [63] M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid-liquid microextraction, J. Chromatogr. A 1116 (2006) 1-9. [64] C. B. Ojeda, F. S. Rojas, Separation and preconcentration by dispersive liquid-liquid microextraction procedure: a review, Chromatographia, 69 (2009) 1-11. [65] X. H. Zang, Q. H. Wu, M. Y. Zhang, G. H. Xia, Z. Wang, Developments of dispersive liquid-liquid microextraction technique. Chinese J. of Anal. Chem. 37 (2009)161-168. [66] N. Fattahi, Y. Assadi, M. R. M. Hosseini, E. Z. Jahromi, Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. J. Chromatogr. A, 1157 (2007) 23-29. [67] H. Kingston, L. Jassie, Introduction to microwave sample preparation: theory and practice. American Chemical Society Washington D.C. (1988). [68] K. E. Haque, Microwave energy for mineral treatment process-a brief review. Int. J. Miner. Process, 57 (1988)1-24. [69] A. Abu-Samra, J. S. Morris, S. R. Koirtyohann, Wet ashing of some biological samples in microwave oven. Anal. Chem. 47 (1975) 1475-1477. [70] E. D. Neas, M. J. Collins, Introduction to microwave sample preparation. American Chemical Society: Washington D.C. 2 (1988) 7-32. [71] M. Letellier and H. Budzinski, Microwave assisted extraction of organic compounds. Analusis. 27(1999) 259-271. [72] Q. H. Jin, F. Liang, H. Q. Zhang, L. W. Zhao, Y. F. Huan, D. Q. Song, Application of microwave techniques in analytical chemistry. Trac-Trends Anal. Chem. 18 (1999) 479. [73] F. E. Smith, E. A. Arsenault, Microwave-assisted sample preparation in analytical chemistry. Talanta, 43 (1996) 1207. [74] E. Fuentes, M. E. Baez, D. Reyes, Microwave-assisted extraction through an aqueous medium and simultaneous cleanup by partition on hexane for determining pesticides in agricultural soils by gas chromatography: A critical study. Anal. Chim. Acta. 578 (2006) 122. [75] E. N. Papadakis, Z. Vryzas, E. Papadopoulou-Mourkidou, Rapid method for the determination of 16 organochlorine pesticides in sesame seeds by microwave-assisted extraction and analysis of extracts by gas chromatography-mass spectrometry. J. Chromatogr. A. 1127 (2006) 6. [76] R. C. Prados-Rosales, J. L. L Garcia, M. D. L. de Castro, Rapid analytical method for the determination of pesticide residues in sunflower seeds based on focused microwave-assisted Soxhlet extraction prior to gas chromatography-tandem mass spectrometry. J. Chromatogr. A. 993 (2003) 121. [77] WHO (World Health Organization), Guidelines for Drinking-water Quality, World Health Organization, Geneve (2004). [78] P. Lepom, B. Brown, G. Hanke, R. Loos, P. Quevauviller, J. Wollgast, Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European Water Framework Directive. J. Chromatogr. A, 1216 (2009) 302-315. [79] M. Coquery, A. Morin, A. Becue, B. Lepot, Priority substances of the European Water Framework Directive: analytical challenges in monitoring water quality. TrAC Trends Anal. Chem. 24 (2005) 117-127. [80] Water Quality & Treatment: A Handbook on Drinking Water (Water Resources and Environmental Engineering Series)by American Water Works Association and James Edzwald (2010). [81] M. Babut, B. Corinne, B. Marc, F. Patrick, G. Jeanne, G. Genevieve, Developing environmental quality standards for various pesticides and priority pollutants for French freshwaters. J. Environ. Manage. 69 (2003) 139-147. [82] S. Killeen, Development and use of environmental quality standards (EQSs) for priority pesticides, Pestic. Sci. 49 (1997) 191-195. [83] J. L. Tadeo, Analysis of Pesticides in Food and Environmental Samples, CRC Press, Boca Raton (2008). [84] Anon, Directive 2000/60/EC of the European Parliament and of the Council of 23 October establishing a framework for Community action in the field of water policy, Off. J. Eur. Comm. L. 327 (2000) 1. [85] Anon, Commission Regulation (EU) n.o 459/2010 of 27 May amending annexes II, III and IV to Regulation (EC) n.o396/2005 of the European Parliament and of the Council as regards maximum levels for certain pesticides in or on certain products 28.05.2010, Off. J. Eur. Comm. L. 129 (2010) 3. [86] Anon, Directive 2009/128/EC of the European Parliament and of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides, Off. J. Eur. Comm. L. 309 (2009) 71. [87] Secretariat of the Stockholm Convention, Ridding the World of POPs: A Guide to the Stockholm Convention on Persistent Organic Pollutants, UNEP—United Nations Evironment Programme, Geneve (2005). [88] C.Tomlin. C. D. S. Tomlin, The pesticide manual: a world compendium, British Crop Protection Publications. Farnham, U.K. (1997). [89] C. H. Walker, S. P. Hopkin, R. M. Sibly, D. B. Peakall.. Major classes of pollutant. In Walker C. al., Principles of ecotoxicology, Taylor & Francis. Bristol, U.K. (1996). [90] WHO (World Health Organization). Physical and chemical properties of DDT and related compounds. DDT and its derivatives: Environmental Aspects. Environmental Health Criteria 83.WHO, Geneva, Switzerland (1989). [91] M. H. Wong, A. O. W. Leung, J. K. Y. Chan, et al., A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk, Chemosphere, 60 (2005) 740-752. [92] R. A. Doong, C. K. Peng, Y. C. Sun, P. L. Liao, Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan. Mar. Pollut. Bull. 45 (2002) 246-253. [93] X. L. Yang, S. S. Wang, Y. R. Bian, F. Chen, G. F. Yu, C. G. Gu, X. Jiang, Dicofol application resulted in high DDTs residue in cotton fields from northern Jiangsu province, China. J. Hazard. Mater. 150 (2008) 92-98. [94] A. Elango, B. Shepherd, T. T. Chen, Effects of endocrine distrupters on the expression of the growth hormone and prolactin mRNA in the rainbow trout pituitary, Gen. Comp. Endocrinol. 145 (2006) 116-127. [95] T. Poolpak, P. Pokethitiyook, M. Kruatrachue, U. Arjarasirikoon, N. Thanwaniwat, Residue analysis of organochlorine pesticides in the Mae Klong river of Central Thailand, J. Hazard. Mater. 156 (2008) 230-239. [96] US Department of Health and Services, Toxicological profile for DDT, DDE and DDD, Agency for Toxic Substances and Disease Registry, Atlanta, GA, September 2002. [97] Y.-N. Xing, Y. Guo, M. Xie, R.-L. Shen, E. Y. Zeng, Detection of DDT and its metabolites in two estuaries of south china using a SPME-based device: First report of p,p-DDMU in water column, Environ. Pollut. 157 (2009) 1382-1387. [98] M. D. Engelmann, R. Hutcheson, K. Henschied, R. Neal, I. F. Cheng, Simultaneous determination of total polychlorinated biphenyl and dichlorodiphenyl-trichloroethane (DDT) by dechlorination with Fe/Pd and Mg/Pd bimetallic particles and flame ionization detection gas chromatography, Microchem. J. 74 (2003) 19-25. [99] C. Basheer, H. K. Lee, J. P. Obbard, Determination of organochlorine pesticides in seawater using liquid-phase hollow fibre membrane microextraction and gas chromatography-mass spectrometry, J. Chromatogr. A 968 (2002) 191-199. [100] H. P. Li, G. C. Li, J. F. Jen, Determination of organochlorine pesticides in water using microwave assisted headspace solid-phase microextraction and gas chromatography, J. Chromatogr. A, 1012 (2003) 129-137. [101] C. Dong, Z. Zeng, X. Li, Determination of organochlorine pesticides and their metabolites in radish after headspace solid-phase microextraction using calix[4]arene fiber, Talanta 66 (2005) 721-727. [102] C. Blasco, C. M. Lino, Y. Pico, A. Pena, G. Font, M.I.N. Silveira, Determination of organochlorine pesticide residues in honey from the central zone of Portugal and the Valencian community of Spain, J. Chromatogr. A 1049 (2004) 155-160. [103] L. Brossa, R.M. Marce', F. Borrull, E. Pocurull, Application of on-line solid-phase extraction-gas chromatography-mass spectrometry to the determination of endocrine disruptors in water samples, J. Chromatogr. A 963 (2002) 287-294. [104] M. C. Wei, J. F. Jen, Determination of polycyclic aromatic hydrocarbons in aqueous samples by microwave assisted headspace solid-phase microextraction and gas chromatography/flame ionization detection, Talanta 72 (2007) 269-1274. [105] A. Paschke, U. Schroter, G. Schurmann, Indirect determination of low vapour pressures using solid-phase microextraction-application to tetrachlorobenzenes and tetrachlorobenzyltoluenes, J. Chromatogr. A 1072 (2005) 93-97. [106] J. Ji, C. Deng, H. Zhang, Y. Wu, X. Zhang, Microwave-assisted steam distillation for the determination of organochlorine pesticides and pyrethroids in Chinese teas, Talanta 71 (2007) 1068-1074. [107] P. Suchan, J. Pulkrabov'a, J. Hajslov'a, V. Kocourek, Pressurized liquid extraction in determination of polychlorinated biphenyls and organochlorine pesticides in fish samples, Anal. Chim. Acta 520 (2004) 193-200. [108] A. Tor, M. E. Aydin, S. Ozcan, Ultrasonic solvent extraction of organochlorine pesticides from soil, Anal. Chim. Acta 559 (2006) 173-180. [109] D. W. Potter, J. Pawliszyn, Detection of substituted benzenes in water at the pg/ml level using solid-phase microextraction and gas chromatography-ion trap mass spectrometry, J. Chromatogr. A 625 (1992) 247-255. [110] H. P. Li, C. H. Lin, J. F. Jen, Analysis of aqueous pyrethroid residuals by one-step microwave-assisted headspace solid-phase microextraction and gas chromatography with electron capture detection, Talanta 79 (2009) 466-471. [111] S. Ulrich,Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 902 (2000) 167-174. [112] Y. He, H. K. Lee, Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe, Anal. Chem. 69 (1997) 463 -4640. [113] M. A. Jeannot, F. F. Cantwell, Solvent microextraction into a single drop. Anal. Chem. 68 (1996) 2236-2240. [114] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid−liquid−liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem. 71 (1999) 2650-2656. [115] G. Shen, H. K. Lee, Hollow fiber-protected liquid phase microextraction of triazine herbicides, Anal. Chem. 74 (2002) 648-654. [116] C. Basheer, R. Balasubramanian, H. K. Lee, Determination of organic micropollutants in rainwater using hollow fiber membrane/liquid-phase microextraction combined with gas chromatography-mass spectrometry, J. Chromatogr. A 1016 (2003) 11-20. [117] Y. P. Huang, Y. C. Yang, Y. Y. Shu, Analysis of semi-volatile organic compounds in aqueous samples by microwave-assisted headspace solid-phase microextraction coupled with gas chromatography-electron capture detection, J. Chromatogr. A 1140 (2007) 35-43. [118] L. Vidal, C. E. Domini, N. Grane, E. Psillakis, A. Canals, Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples, Anal. Chim. Acta 592 (2007) 9-15. [119] C. L. Ye, Q. X. Zhou, X. M. Wang, Headspace liquid-phase microextraction using ionic liquid as extractant for the preconcentration of dichlorodiphenyltri-chloroethane and its metabolites at trace levels in water samples, Anal. Chim. Acta 572 (2006) 165-171. [120] Y. A. Shi, M. Z. Chen, S. Muniraj, J. F. Jen, Microwave-assisted headspace controlled temperature liquid-phase microextraction of chlorophenols from aqueous samples for gas chromatography-electron capture detection, J. Chromatogr. A 1207 (2008) 130-135. [121] M. Y. Tsai, P. V. Kumar, H. P. Li, J. F. Jen, Analysis of hexachlorocyclohexanes in aquatic samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection, J. Chromatogr. A 1217 (2010) 1891-1897. [122] H. Farahani, Y. Yamini, S. Shariati, M. Reza, K. Zanjani, S. M. Baghahi, Development of liquid phase microextraction method based on solidification of floated organic drop for extraction and preconcentration of organochlorine pesticides in water samples, Anal. Chim. Acta 626 (2008) 166-173. [123] S. P. Huang, S. D. Huang, Dynamic hollow fiber protected liquid phase microextraction and quantification using gas chromatography combined with electron capture detection of organochlorine pesticides in green tea leaves and ready-to-drink tea, J. Chromatogr. A 1135 (2006) 6-11. [124] C. Dong, Z. Zeng, M. Yang, Determination of organochlorine pesticides and their derivations in water after HS-SPME using polymethylphenylvinylsiloxane-coated fiber by GC-ECD, Water Research 39 (2005) 4204-4210. [125] C. Cortada, L. Vidal, S. Tejada, A. Romo, A. Canals, Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography-mass spectrometry, Anal. Chim. Acta 638 (2009) 29-35. [126] S. P. Huang, S. D. Huang, Determination of organochlorine pesticides in water using solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction, J. Chromatogr. A 1176 (2007) 19-25. [127] Anon, Directive 98/83/EC of the Council of 3 of November on the quality of water intended for human consumption, Off. J. Eur. Comm. 32 (1998)05. [128] Anon, Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration, Off. J. Eur. Comm. L. 372 (2006) 19. [129] S. Park, A. D. Dikin, T. S. Nguyen, S. R. Ruoff. Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, J. Phys. Chem. C Letters, 113 (2009) 15801. [130] I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. D. Costa, V. Speisser, C. Boeglin, M. Houlle, D. Begin, D. Plee, M. J. Ledoux, C. Pham-Huu, Microwave Synthesis of Large Few-Layer Graphene Sheets in Aqueous Ammonia, Nano Res. 3 (2010) 126. [131] A. K. Geim, K. S. Novoselov, The rise of graphene. Nature Mater. 6 (2007) 183-191. [132] J. Wu, W. Pisula, K. Mullen, Graphenes as potential materials for electronics. Chem. Rev., 107 (2007) 718-747. [133] C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, A. Govindaraj, Graphene, the new nanocarbon. J. Mater. Chem., 19 (2009) 2457-2469. [134] C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321 (2008) 385-388. [135] A. A. Baladin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single -Layer Graphene. Nano Lett., 8 (2008) 902-907. [136] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8 (2008) 3498-3502. [137] K. I. Bolotin, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, (2008) 351-355. [138] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438 (2005) 201-204. [139] K. I. Bolotin, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146 (2008)351-355. [140] Y. Zhu, S. Murali, W. Cai, X. Li, J. Won Suk, J. R. Potts, R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 22 (2010) 3906-3924. [141] S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, R. C. Haddon, Solution Properties of Graphite and Graphene. J. Am. Chem. Soc., 128 (2006) 7720-7721. [142] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130 (2008) 5856-5857. [143] S. Park, Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20 (2008) 6592-6594. [144] Y. Si, E. T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8 (2008) 1679-1682. [145] G. Eda, G. Fanchini, M. Chhowall, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol. 3 (2008) 270-274. [146] X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8 (2008) 323-327. [147] S. Stankovich, R. Piner, S. T. Nguyen, R. S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44 (2006) 3342-3347. [148] J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. M. D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir, 24 (2008) 10560-10564. [149] S. Stankovich, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45 (2007) 1558-1565. [150] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16 (2006) 155-158. [151] J. A. Gerbec, D. Magana, A. Washington, G. F. Strouse, Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc., 127 (2005) 15791. [152] A. B. Panda, G. P. Glaspell, M. S. El-Shall, Microwave Synthesis of Highly Aligned Ultra Narrow Semiconductor Rods and Wires, J. Am. Chem. Soc., 128 (2006) 2790. [153] F. Della Negra, M. Meneghetti, E. Menna, Microwave-assisted synthesis of a soluble single wall carbon nanotube derivative. Fullerenes, Nanotubes, and Carbon Nanostructures, 2003, 11, 25. [154] E. H. L. Falcao, R. G. Blair, J. J. Mack, L. M. Viculis, C. Kwon, M. Bendikov, R. B. Kaner, B. S. Dunn, F. Wudl,Microwave exfoliation of a graphite intercalation compound. Carbon, 45 (2007) 1364. [155] M. A. Hassan, V. Abdelsayed, A. E. R. S. Khder, K. M. AbouZeid, J. Terner, M. Samy El-Shall, Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19 (2009) 3832-3837. [156] W. S. Hummers Jr., R. E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc., 80 (1958) 1339. [157] M. C. Wei, J. F. Jen, Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-electron-capture detection. J. Chromatogr. A, 1012 (2003) 111-118. [158] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. J. Phys. Chem. C 112 (2008) 8192. [159] B. G. Choi, H. Park, M. H. Yang, Y. M. Jung, S.Y. Lee, W. H. Hong, T. J. Park, Microwave-Assisted Synthesis of Highly Water-Soluble Graphene towards Electrical DNA Sensor. Nanoscale, 2 (2010) 2692. [160] F. Li, H. Yang, C. Shan, Q. Zhang, D. Han, A. Ivaska, L. Niu, The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J. Mater. Chem. 19 (2009) 4022 [161] C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62 (1990) 2145-2148. [162] S. Risticevic, V. H. Niri, D. Vuckovic, J. Pawliszyn, Recent developments in solid-phase microextraction. Anal. Bioanal. Chem. 393 (2009)781-795. [163] G. Ouyang, J. Pawliszyn, SPME in Environmental Analysis. Anal. Bioanal. Chem. 386 (2006) 1059-1073. [164] C. Dietz, J. Sanz, C. Camara, Recent developments in solid-phase microextraction coating and related techniques. J. Chromatogr. A, 1103 (2006) 183-192. [165] D. Djozan, Y. Assadi, S. Hosseinzadeh, Anodized Aluminum Wire as a Solid-Phase Microextraction Fiber. Anal. Chem. 73 (2001) 4054-4058. [166] D. Djozan, Y. Assadi, G. Karim-Nezhad, Modified Copper Wire as Solid-Phase Microextraction Fiber, Selective Extraction of Some Amines. Chromatographia, 56 (2002) 611-616. [167] D. Djozan, S. Bahar, Monitoring of Phenol and 4-Chlorophenol in Petrochemical Sewage Using Solid-Phase Microextraction and Capillary Gas Chromatography. Chromatographia, 58 (2003) 637-642. [168] D. Budziak, E. Martendal, E. Carasek, Application of NiTi alloy coated with ZrO2 as a new fiber for solid-phase microextraction for determination of halophenols in water samples. Anal. Chim. Acta 598 (2007) 254-260. [169] D. D. Cao, J. X. Lu, J. F Liu, G. B. Jiang, In-situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber. Anal. Chim. Acta 611 (2008) 56-61. [170] M. A. Farajzadeh, N.A. Rahmani, Electrolytically produced copper(I) chloride on the copper wire as an excellent sorbent for some amines. Talanta, 65 (2005)700-704. [171] H. L. Xu, Y. Li, D. Q. Jiang, X. P. Yan, Hydrofluoric Acid Etched Stainless Steel Wire for Solid-Phase Microextraction. Anal. Chem. 81(2008) 4971-4977. [172] J. Lu J. Liu, Y. Wei, K. Jiang, S. Fan, J. Liu, G. Jiang, Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. J. Sep. Sci. 30 (2007) 2138-2143. [173] C. Jia, X. Zhu, E. Zhao, P. Yu, M. He, L. Chen, Application of SPME Based on a Stainless Steel Wire for the Determination of Pyrethroid Insecticide Residues in Water and Soil. Chromatographia, 72 (2010) 1219-1223. [174] D. Panavaite, A. Padarauskas, V. Vickackaite, Silicone glue coated stainless steel wire for solid phase microextraction. Anal. Chim. Acta 571 (2006) 45-50. [175] C. J. Collins, D. W. M. Arrigan, A review of recent advances in electrochemically modulated extraction methodAnal. Bioanal. Chem. 393 (2009) 835-845. [176] C. Dong, Z. Zeng, X. Li, Determination of organochlorine pesticides and their metabolites in radish after headspace solid-phase microextraction using calix[4]arene fiber. Talanta 66 (2005) 721-727. [177] Y. Liu, Y. Shen, M. L. Lee, Porous Layer Solid Phase Microextraction Using Silica Bonded Phases. Anal. Chem. 69 (1997) 190 -195. [178] J. Chen, J. Zou, J. Zeng, X. Song, J. Ji, Y. Wang, J. Ha, X. Chen, Preparation and evaluation of graphene-coated solid-phase microextraction fiber. Anal. Chim. Acta 678 (2010) 44-49. [179] A. F. D. Oliveira, C.B.D. Silveira, S.D.D Campos, E.A.D Campos, E. Carasek, Talanta 66 (2005) 74. [180] A. Kumar, Gaurav, A.K. Malik, D. K. Tewary, B. Singh, A review on development of solid phase microextraction fibers by sol-gel methods and their applications. Anal. Chim. Acta 610 (2008) 1-14. [181] F. G. Tamayo, E. Turiel, A. Martın-Esteban, Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. J. Chromatogr. A, 1152 (2007) 32-40. [182] T. Gorecki, P. Martos, J. Pawliszyn, Strategies for the Analysis of Polar Solvents in Liquid Matrixes. Anal. Chem. 70 (1998) 19-27. [183] M. Valcarcel, S. Cardenas, B. M. Simonet, Y. Moliner-Martınez, R. Lucena, Carbon nanostructures as sorbent materials in analytical processes, Trends Anal. Chem. 27 (2008) 34-45. [184] Y. Cai, G. Jiang, J. Liu, Q. Zhou, Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent for the Determination of Bisphenol A, 4-n-Nonylphenol, and 4-tert-Octylphenol. Anal. Chem. 75 (2003) 2517-2521. [185] X. Liu, Y. Ji, Y. Zhang, H. Zhang, M. Liu, Oxidized multiwalled carbon nanotubes as a novel solid-phase microextrac
摘要: In recent years, the scientific community has grabbed much interest in the development of environmentally friendly activities. Green analytical chemistry (GAC) mainly pursues the objectives of replacing toxic reagents, and miniaturizing and rapid analytical methodologies, so as to minimize environmental and human hazards by replacing polluting methods with clean ones. This dissertation strikes at the heart of one of the major challenges associated with green sample preparation, developments on miniaturized or environmental-friendly micro-extraction techniques based analytical methodologies. The work described involves the development of novel sorbent coating material for solid-phase microextraction, and exploration of hollow fiber based liquid-phase microextraction system coupled with clean energy for the rapid analysis of interesting analytes of environmental concern. In Chapter 2, a simple, rapid and sensitive analytical method for determining dichlorodiphenyltrichloroethane (DDT) and its main metabolites in aqueous samples has been developed using one-step microwave-assisted controlled-temperature headspace liquid-phase micro-extraction (MA-CT-HS-LPME) technique coupled with gas chromatography-electron capture detection (GC-ECD). Parameters influencing the extraction efficiency were thoroughly optimized and the best extraction was achieved using 10 mL aqueous sample at pH 6 and 4 µL of 1-octanol as the LPME solvent, sampling at 34℃ for 6.5 min under 249 W of microwave irradiation. Under optimum conditions, detection limits were between 20 and 30 ngL¯¹ for four interested analytes (DDT and its main metabolites), and precision was in the range of 3.2-11.3% RSD. The proposed method was validated with real water samples, and the results indicated that the spiked recovery was between 95.5 and 101.3% for agricultural field water, and between 93.5% and 98% for river water. In Chapter 3, few-layer, less thickness graphene nanosheets (GNSs) were synthesized using a rapid and novel microwave assisted synthetic method for the application as a novel coating material for SPME fiber. Microwave synthesized GNSs were verified by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscope (HR-TEM). In Chapter 4, GNSs coated solid phase microextraction (SPME) fiber was prepared by immobilizing microwave synthesized GNSs on a stainless steel wire. GNS-SPME fiber was characterized using FE-SEM and the results showed that the GNSs coating was homogeneous, porous, and possessed large specific area. The performance and feasibility of the GNSs coated SPME fiber was evaluated under one-step microwave assisted (MA) controlled-temperature (CT) headspace (HS) SPME followed by gas chromatography (GC) with electron capture detection (ECD) for five organochlorine pesticides (OCPs) as model compounds in aqueous samples. Under the optimized conditions, detection limits for the OCPs varied between 0.16 and 0.92 ngL¯¹ and linear ranges varied between 1 and 1500 ngL¯¹, with correlation coefficients ranging from 0.9985 to 0.9998, and RSDs in the range of 3.6 – 15.8% (n = 5). The method was successfully applied to the analyses of real water samples with recoveries from 80.5 to 105.1% for river water and from 85.7 to 106.5% for lake water. In comparison with the commercial polydimethylsiloxane fiber, the GNS coated fiber showed better extraction efficiency, higher mechanical and thermal stability, and lower production cost. Above results demonstrated that the proposed methods were simple, rapid, efficient pretreatment and environmentally-friendly procedures and thus the developed methods were proved to serve as novel and green analytical methodological approaches for the rapid determination of OCCs in aqueous sample.
近年來由於環保意識高漲,因此開發具環保概念之綠色方法廣受到科學家之重視。綠色分析化學(GAC) 主要的目的為減少或取代有毒溶劑與試劑之使用,並開發微小化與快術的分析方法,以減少對人體與環境之危害。基於上述之理由,本研究之主要目的於發展符合綠色前處理觀念之微小化且環保微萃取技術應用於分析方法中,其中包含以新興吸附化合物塗覆之固相微萃取法與液相微萃取技術結合綠色能源於環境中微量物質萃取之應用。 首先開發一簡單、快速且靈敏之微波輔助控溫頂空液相微萃取結合氣相層析法-電子捕捉偵測器之分析方法,於環境水樣中滴滴梯(DDT)與其代謝物之偵測。研究結果顯示取pH調整為6.0水樣品10毫升,以4 μL正辛醇為萃取溶劑,於微波功率249瓦、34°C下萃取6.5分鐘,為最佳萃取條件。所開發方法在最佳條件下分析水樣中滴滴梯類化合物之偵測極限介於20 ~ 30 ngL-1之間,精密度介於3.2 ~ 11.3%之間。分析農田中水樣品與河水樣品可得到回收率分別介於95.5 ~ 101.3% 與 93.5 ~ 98% 之間。 另一研究主要是利用快速且新穎之微波輔助合成技術,應用於合成具有多層且厚度為奈米級的石墨烯(GNSs)材質,並利用X光粉末繞射儀(XRD)、X射線光電子能譜(XPS)、場發射電子顯微鏡(FE-SEM)與高解析度穿透式電子顯微鏡(HR-TEM)等儀器,檢測所合成材質之性質。以合成之石墨烯材料做為吸附材質,塗覆於固相微萃取法之不銹鋼金屬絲上,成為一石墨烯塗覆之固相微萃取纖維。經場發射電子顯微鏡檢測後證明所自製之固相微萃取塗覆纖維,為均勻塗覆且具有多孔性與高吸附面積之特性。本研究並將自製石墨烯塗覆之固相微萃取纖維,以微波輔助控溫頂空固相微萃取法結合氣相層析法電子捕捉偵測器之方法,分析水樣中五種有機氯農藥,並針對所開發方法進行方法確效之探討。在最佳條件下,分析水中有機氯農藥之偵測極限介於0.16 ~ 0.92 ngL-1之間,分析線性範圍為1 ~ 1500 ngL-1,線性相關係數介於0.9985 ~ 0.9998之間,方法精密度則介於 3.6 ~ 15.8% 之間 (n=5)。所開發方法於萃取河水與湖水中有機氯農藥之回收率則介於80.5 ~ 105.1% 與85.7 ~ 106.5%之間。實驗證明以塗覆石墨烯之固相微萃取技術,與市售塗覆聚二甲基矽氧烷(PDMS)之固相微萃取技術進行比較,結果可得知,以石墨烯為塗覆材質之固相微萃取法具有較佳之萃取效率、耐用性、熱穩定性與低成本等優點。 由上述研究結果可得知,所開發之微波輔助控溫頂空液相微萃取法與石墨烯塗覆固相微萃取技術,為簡單、快速、具高萃取效率與環保之樣品前處理技術。本研究並證明所開發之新興綠色分析方法,可提快速分析水樣中微量有機氯化合物之參考。
其他識別: U0005-0111201114202800
Appears in Collections:化學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.