Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16851
標題: 奈米白金修飾超微碳電極於電化學氣體感測器之研發與應用
Development and Application of Gas sensor by Using Platinum Nanoparticle Modified Ultramicro Carbon Electrode
作者: 陳威成
Chen, Wei-Cheng
關鍵字: platinum nanoparticle
奈米白金
gas sensor
氣體感測器
出版社: 化學系所
引用: 1. 行政院衛生署暨台北榮民總醫院臨床毒藥物防治諮詢中心網頁, 楊振昌醫師 2. K. Schachl, H. Alemu, K. Kalcher, J. Jezkova, I. Svancara, K. Vytras, Analyst, 1997, 122, p.985. 3. E. Hurdis, H. Romeyn, Anal. Chem., 1954, 26, p.320. 4. G. L. Kok, T. P. Holler, M. B. Lopez, H. A. Natchtrleb, M. Yuan, Environ. Sci. Technol, 1978, 72, p.1077. 5. C. Matsubara, N.Kawamoto, K. Takamura, Analyst, 1992, 117 (11), p.1781. 6. J. L. Chang, J. M. Zen, Electrochem. Commun., 2006, 8 , p. 571. J. L. Chang, J. M. Zen, Electrochem. Commun., 2007, 9, p. 2744. 7. C.H. Chou, J. L. Chang, J. M. Zen, Electroanalysis, 2009, 21 , p. 206. 8. C.H. Chou, J. L. Chang, J. M. Zen, Sensors and Actuators B, 2010, 147, p. 669. 9. S. Hrapovic, Y. Liu, K. B. Male, John H. T. Luong, Anal. Chem., 2004, 76, p. 1083. 10. T. Hoshi, H. Saiki, J. I. Anzai, Talanta, 2003, 61, p.363. 11. E. J. Kim, T. Haruyama, Y. Yanagida, E. Kobatake, M. Aizawa, Anal. Chim. Acta, 1999, 394, p. 225. 12. T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem.,2003, 75, p2080. 13. L. D. Bowers, Anal. Chem.,1986, 58, p513A. 14. R. C. Matos, J. J. Pedrotti, L. Angnes, Anal. Chim. Acta, 2001, 441, p. 73. 15. 中華民國綠十字健康服務協會網頁, 林杰樑 16. R.S. Sohal, R.J. Mockett, W. C. Orr, Free Radical Biol. Med. 2002, 33, p.575. M. A. Yorek, Free Radical Res. 2003, 37, p.471. 17. J. J. Lingane, P. J. Lingane, J. Electroanal. Chem., 1963, 5, 411. 18. M. Gerlache, S. Girousi, G. Quarin, J.M. Kauffmann, Electrochim. Acta, 1998, 43, p.3467. 19. J. A. Cox, R. K. Jaworski, Anal. Chem., 1989, 61, p.2176. 20. A. A. Karyakin, E. A. Puganova, I. A. Budashov, I. N. Kurochkin, E. E. Karyakina, V. A. Levchenko, V. N. Matveyenko, and Sergey D. Varfolomeyev, Anal. Chem., 2004, 76, p.474. 21. X. M. Miao, R. Yuan , Y. Q. Chai, Y. T. Shi, Y. Y. Yuan, J. Electroanal. Chem., 2008, 612, p.157. 22. S. J. Yao, J. H. Xu, Y. Wang, X. X. Chen, Y. X. Xu, S. S. Hu, Anal. Chim. Acta, 2006, 557, p.78. 23. F. C. Wang, R. Yuan, Y. Q. Chai, D. P. Tang, Anal. Bioanal. Chem., 2007, 387, p.709. 24. S. A. Miscoria, G. D. Barrera, G. A. Rivas, Electroanalysis, 2002, 14, p.981. 25. X. Bo, J. C. Ndamanisha, J. Bai, L. Guo, Talanta, 2010, p.85. 26. T. Hoshi, S. Kuwazawa, C. Tsuchiya, Q. Chen, J. I. Anzai, Anal. Chem., 2001, 73, p.5310. N. V. Kulagina, L. Shankar, A. C. Mickael, Anal. Chem., 1999, 71, p.5093. 27. A. A. Karyakin, E. E. Karyakina, L. Gorton, Anal. Chem., 2000, 72, p.1720. 28. U. Scharf, E. W. Grabner, Electrochim. Acta, 1996, 41, p.223. 29. 曾明漢, 材料與社會, 1992, 68期, p.57. 30. 陳一誠, 材料與社會, 1992, 68期, p.62. 31. 顧志鴻, 材料與社會, 1992, 68期, p.71. 馬志欽, 科學月刊, 1999, 3月, 351期. 32. V. I. Ogurtsov, D. B. Papkovsky, Semsor and Actuat B-Chem, 1998, 51, p.377. 33. 周瑞福, 氣體感測器原理與應用, p.26. 34. 黃炳照,The Chinese SOC.,2001,59, p.207. 35. N. Li, I. C. Tan, H. C. Zeng, Electrochem. Soc., 1993, 140, p.1068. 36. Z. Ogumi, T. kuroe, Z. I. Takehara, J. Electrochem. Soc., 1985, 132 p.2601. 37. A. V. Anantaraman, C. L. Garner, J. Electroanal. Chem., 1996, 414, p.115. 38. K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, p.290. M. Umeda, M. Mohamedi, I. Uchida, Langmuir, 2001, 17, p.7970. L. R. Jordan, P. C. Hauser, Anal. Chem., 1997, 69, p.2669. 39. A. Yasuda, N. Yamaga, K. Doi, T. Fujioka, S. Kusanag, J. Electrochem. Soc., 1992, 139, p.1091. 40. K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, 3, p.290. 41. Z. Samec, F. Opekar, G. J. E. F. Crijns, Electroanalysis, 1995, 7, p.1054. 42. K. C. Ho, W. T. Hung, Semsor and Actuat B-Chem, 2001, 79, p. 11. 43. D. R. Lawson, L. D. Whiteley, C. R. Martin, M. N. Szentirmay, J. I. Song, J. Electrochem. Soc., 1988, 135, p. 2247. 44. A.J. Bard, L.R. Faulkner, Wiley & Sons, Inc. (2 Edt.), Electrochemical Method, Fundamentals and Applications, p. 176. 45. Tsuge, H.J., et al., J. Biochem., 1975, 78, p.835. 46. R. Couderc, J. Baratti, Agric. Bio. Chem., 1980, 44, p.2279. 47. M. H. Chiu, W. L. Cheng, G. Muthuraman, C. T. Hsu, H. H. Chung, J. M. Zen, Biosens. Bioelectron., 2009, 24, p.3008. 48. 田福助, 電化學基本原理與應用, 1994, p.169. 49. 蘇癸陽, 實用電鍍理論與實際, 1994, p.10. 50. H. F. Cui, J. S. Ye, W. D. Zhang, J. Wang, F. S. Sheu, J. Electroanal. Chem., 2005, 577, p.295. 51. S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle, G. Denuault, Anal. Chem., 2002, 74, p.1322. 52. T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem., 2003, 75, p.2080. 53. Z. Wu, L. Chen, G. Shen, R. Yu, Sensors and Actuators B, 2006, 119, p. 295. 54. M. Yang, F. Qu, Y. Lu, Y. He, G. Shen, R. Yu, Biomaterials, 2006, 27, p.5944. 55. J. H. Han, H. Boo, S. Park, T. D. Chung, Electrochim. Acta, 2006, 52, p.1788. 56. A. Kicela, S. Daniele, Talanta, 2006, 68, p.1632. 57. K. B. Male, S. Hrapovic, J. H. T. Luong, Analyst, 2007, 132, p.1254. 58. J. Lu, I. Do, L. T. Drzal, R. M. Worden, I. Lee, ACS Nano, 2008, p.1825. 59. D. Wen, X. Zou, Y. Liu, L. Shang, S. Dong, Talanta, 2009, 79, p.1233. 60. S. Chakraborty, C. R. Raj, Biosens. Bioelectron., 2009, 24, p.3264. 61. X. Peng, D. He, S. Luo, Q. Cai, Sensors and Actuators B, 2009, 137, p. 134. 62. H. Angerstein-Kozlowska, B. E. Conway, W. B. A. Sharp, Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 43, p.9. 63. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc., 1999, 146, p.3750. 64. L. Newman(Ed.),American Chemical Society, 1993, p.300. 65. T. R. Todd, L. W. Cover, Pittcon’97, 1997, p.16. 66. T. Ibusuki, Atmos. Environ., 1983, 17, p.393. 67. J. H. Lee, I. N. Tang, Anal. Chem., 1990, 62, p.2381. 68. A. L. Lazrus, G. L. Kok, J. A. Lind, S. N. Gitlin, B. G. Heikes, R. E. Shetter, Anal. Chem., 1986, 58, p.594. 69. J. H. Lee, I. N. Tang, Envion. Sci. Technol., 1994, 28, p.1180. 70. P. A. Tanner, A. Y. S. Wong, Anal. Chim. Acta, 1998, 370, p.279. 71. J. Meyer, U. Karst, Anal. Chim. Acta, 1999, 401, p.191. 72. J. Liu, M. Steinberg, B. J. Johnson, Chemosphere, 2003, p.815. 73. J. Kulys, Sensors and Actuators B, 1992, 9, p. 143. 74. H. Huang, P. K. Dasgupta, Z. Genfa, Anal. Chem., 1996, 68, p.2062. 75. S. Kuwata, Y. Sadaoka, Sensors and Actuators B, 2000, 65, p. 325. 76. H. Hwang, P. K. Dasgupta, Environ. Sci. Technol., 1985, 19, p.255. 77. (a) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1998, 43, 579-588. (b) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1998, 43, 2015-2024. (c) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1999, 44, 2455-2462. (d) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1999, 44, 4573-4582. (e) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 2000, 45, 3573-3579. 78. Y. Mukouyama, S. Nakanishi, H. Konishi, Y. Nakato, J. Electroanal. Chem., 1999, 473, p.156. 79. P. Karam, L. I. Halaoui, Anal. Chem., 2008, 80, p.5441. 80. S. Wasmus, E. J. Vasini, M. Krausa, H. T. Mishima, W. Vielstich, Electrochim. Acta, 1994, 39, p.23. 81. A. S. Kumar, S. Sornambikai, India J. Chem. ,2009, 48A, p.940. 82. 莊晴如,國立中興大學化學系碩士論文,2001. 83. F. H.B. Lima, E. A. Ticianelle, Electrochim. Acta, 2004, 49, p.4091. 84. J. F. E. Gootzen, A. H. Wonders, W. Visscher, R. A. van Santen, Electrochim. Acta, 1998, 43, p.1851.
摘要: 本研究以電鍍修飾奈米白金網版印刷超微電極(NPt–SPUME)塗佈固態高分子電解質Nafion®(4.5±0.5 um),以安培法開發電化學雙氧水氣體感測器。不須額外添加任何保護試劑便可成功在超微碳電極表面電沉積粒徑大小均一(103±14 nm)、分布均勻之奈米白金顆粒。應用電化學安培法定量氣態雙氧水,偵測溫度與氣體流速分別為30℃與50(mL min-1),可得到良好檢量線範圍(溶液濃度5 uM-909 mM, r2 = 0.999),理論偵測極限為0.34 uM (S/N=3),此電極製備方法偵測0.5 mM H2O2相對標準誤差(RSD)為2.84%(N=80),顯示具有良好的電極製備再現性。利用液氣相差分離揮發程度不同之干擾物進而達到高選擇性偵測氣體雙氧水,並於海水、雨水、湖水、綠茶、舒跑、牛奶等六種真實水樣中添加雙氧水並估計回收率,由以上證明NPt-SPUME具有良好之選擇性與靈敏度偵測氣體雙氧水。應用性方面,使用乙醇氧化酵素(AOD)反應生成雙氧水並直接定量乙醇的濃度,檢量線範圍(溶液濃度5.15 uM-4.89 mM, r2 = 0.999),理論偵測極限為0.256
In this study, we develop an electrochemical amperometric H2O2 gas sensor based on a screen-printed edge band carbon ultramicroelectrode deposited with Pt nanoparticles and coated with Nafion (4.5±0.5 um) as the solid polymer electrolyte.1 Homogeneous size (103±14 nm) and distribution of Pt nanoparticles is stably deposited on the SPUME (NPt–SPUME) without either protective or capped agents. In amperometric detection, the sensor shows good linearity (5 uM–909 mM, r2=0.999) at 30 ℃ under a flow rate of N2 gas (50 mL min–1). The relative standard deviation (RSD) of reproducibility is 2.84% (n=80) for continuous determination of 0.5 mM H2O2. The detection limit was calculated as 0.34 uM (S/N=3). We detect H2O2 in gas phase with the advantage that the interference from biological species can be avoided. Real samples analysis is demonstrated for milk, tea, lake, rain, and sports drink samples with appreciable recovery values. Overall, the NPt-SPUME was found to be highly sensitive and selective towards H2O2 sensing. Finally, the use of alcohol oxidase (AOD) indirect quantitative alcohol concentration, calibration range (solution concentration of 5.15 uM-4.89 mM, r2=0.999), detection limit of 0.256 uM (S/N=3), Real samples obtained good recoveries (98.24%-103.61%) and using glucose oxidase (GOD) indirect quantitative glucose concentration, calibration range (solution concentration of 4.98 uM–13.57 mM, r2=0.999), detection limit of 0.363 uM (S/N=3).
URI: http://hdl.handle.net/11455/16851
其他識別: U0005-0907201119443200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0907201119443200
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.