Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16851
DC FieldValueLanguage
dc.contributor魏國佐zh_TW
dc.contributor石瑩zh_TW
dc.contributor.advisor曾志明zh_TW
dc.contributor.author陳威成zh_TW
dc.contributor.authorChen, Wei-Chengen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:56:30Z-
dc.date.available2014-06-06T06:56:30Z-
dc.identifierU0005-0907201119443200zh_TW
dc.identifier.citation1. 行政院衛生署暨台北榮民總醫院臨床毒藥物防治諮詢中心網頁, 楊振昌醫師 2. K. Schachl, H. Alemu, K. Kalcher, J. Jezkova, I. Svancara, K. Vytras, Analyst, 1997, 122, p.985. 3. E. Hurdis, H. Romeyn, Anal. Chem., 1954, 26, p.320. 4. G. L. Kok, T. P. Holler, M. B. Lopez, H. A. Natchtrleb, M. Yuan, Environ. Sci. Technol, 1978, 72, p.1077. 5. C. Matsubara, N.Kawamoto, K. Takamura, Analyst, 1992, 117 (11), p.1781. 6. J. L. Chang, J. M. Zen, Electrochem. Commun., 2006, 8 , p. 571. J. L. Chang, J. M. Zen, Electrochem. Commun., 2007, 9, p. 2744. 7. C.H. Chou, J. L. Chang, J. M. Zen, Electroanalysis, 2009, 21 , p. 206. 8. C.H. Chou, J. L. Chang, J. M. Zen, Sensors and Actuators B, 2010, 147, p. 669. 9. S. Hrapovic, Y. Liu, K. B. Male, John H. T. Luong, Anal. Chem., 2004, 76, p. 1083. 10. T. Hoshi, H. Saiki, J. I. Anzai, Talanta, 2003, 61, p.363. 11. E. J. Kim, T. Haruyama, Y. Yanagida, E. Kobatake, M. Aizawa, Anal. Chim. Acta, 1999, 394, p. 225. 12. T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem.,2003, 75, p2080. 13. L. D. Bowers, Anal. Chem.,1986, 58, p513A. 14. R. C. Matos, J. J. Pedrotti, L. Angnes, Anal. Chim. Acta, 2001, 441, p. 73. 15. 中華民國綠十字健康服務協會網頁, 林杰樑 16. R.S. Sohal, R.J. Mockett, W. C. Orr, Free Radical Biol. Med. 2002, 33, p.575. M. A. Yorek, Free Radical Res. 2003, 37, p.471. 17. J. J. Lingane, P. J. Lingane, J. Electroanal. Chem., 1963, 5, 411. 18. M. Gerlache, S. Girousi, G. Quarin, J.M. Kauffmann, Electrochim. Acta, 1998, 43, p.3467. 19. J. A. Cox, R. K. Jaworski, Anal. Chem., 1989, 61, p.2176. 20. A. A. Karyakin, E. A. Puganova, I. A. Budashov, I. N. Kurochkin, E. E. Karyakina, V. A. Levchenko, V. N. Matveyenko, and Sergey D. Varfolomeyev, Anal. Chem., 2004, 76, p.474. 21. X. M. Miao, R. Yuan , Y. Q. Chai, Y. T. Shi, Y. Y. Yuan, J. Electroanal. Chem., 2008, 612, p.157. 22. S. J. Yao, J. H. Xu, Y. Wang, X. X. Chen, Y. X. Xu, S. S. Hu, Anal. Chim. Acta, 2006, 557, p.78. 23. F. C. Wang, R. Yuan, Y. Q. Chai, D. P. Tang, Anal. Bioanal. Chem., 2007, 387, p.709. 24. S. A. Miscoria, G. D. Barrera, G. A. Rivas, Electroanalysis, 2002, 14, p.981. 25. X. Bo, J. C. Ndamanisha, J. Bai, L. Guo, Talanta, 2010, p.85. 26. T. Hoshi, S. Kuwazawa, C. Tsuchiya, Q. Chen, J. I. Anzai, Anal. Chem., 2001, 73, p.5310. N. V. Kulagina, L. Shankar, A. C. Mickael, Anal. Chem., 1999, 71, p.5093. 27. A. A. Karyakin, E. E. Karyakina, L. Gorton, Anal. Chem., 2000, 72, p.1720. 28. U. Scharf, E. W. Grabner, Electrochim. Acta, 1996, 41, p.223. 29. 曾明漢, 材料與社會, 1992, 68期, p.57. 30. 陳一誠, 材料與社會, 1992, 68期, p.62. 31. 顧志鴻, 材料與社會, 1992, 68期, p.71. 馬志欽, 科學月刊, 1999, 3月, 351期. 32. V. I. Ogurtsov, D. B. Papkovsky, Semsor and Actuat B-Chem, 1998, 51, p.377. 33. 周瑞福, 氣體感測器原理與應用, p.26. 34. 黃炳照,The Chinese SOC.,2001,59, p.207. 35. N. Li, I. C. Tan, H. C. Zeng, Electrochem. Soc., 1993, 140, p.1068. 36. Z. Ogumi, T. kuroe, Z. I. Takehara, J. Electrochem. Soc., 1985, 132 p.2601. 37. A. V. Anantaraman, C. L. Garner, J. Electroanal. Chem., 1996, 414, p.115. 38. K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, p.290. M. Umeda, M. Mohamedi, I. Uchida, Langmuir, 2001, 17, p.7970. L. R. Jordan, P. C. Hauser, Anal. Chem., 1997, 69, p.2669. 39. A. Yasuda, N. Yamaga, K. Doi, T. Fujioka, S. Kusanag, J. Electrochem. Soc., 1992, 139, p.1091. 40. K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, 3, p.290. 41. Z. Samec, F. Opekar, G. J. E. F. Crijns, Electroanalysis, 1995, 7, p.1054. 42. K. C. Ho, W. T. Hung, Semsor and Actuat B-Chem, 2001, 79, p. 11. 43. D. R. Lawson, L. D. Whiteley, C. R. Martin, M. N. Szentirmay, J. I. Song, J. Electrochem. Soc., 1988, 135, p. 2247. 44. A.J. Bard, L.R. Faulkner, Wiley & Sons, Inc. (2 Edt.), Electrochemical Method, Fundamentals and Applications, p. 176. 45. Tsuge, H.J., et al., J. Biochem., 1975, 78, p.835. 46. R. Couderc, J. Baratti, Agric. Bio. Chem., 1980, 44, p.2279. 47. M. H. Chiu, W. L. Cheng, G. Muthuraman, C. T. Hsu, H. H. Chung, J. M. Zen, Biosens. Bioelectron., 2009, 24, p.3008. 48. 田福助, 電化學基本原理與應用, 1994, p.169. 49. 蘇癸陽, 實用電鍍理論與實際, 1994, p.10. 50. H. F. Cui, J. S. Ye, W. D. Zhang, J. Wang, F. S. Sheu, J. Electroanal. Chem., 2005, 577, p.295. 51. S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle, G. Denuault, Anal. Chem., 2002, 74, p.1322. 52. T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem., 2003, 75, p.2080. 53. Z. Wu, L. Chen, G. Shen, R. Yu, Sensors and Actuators B, 2006, 119, p. 295. 54. M. Yang, F. Qu, Y. Lu, Y. He, G. Shen, R. Yu, Biomaterials, 2006, 27, p.5944. 55. J. H. Han, H. Boo, S. Park, T. D. Chung, Electrochim. Acta, 2006, 52, p.1788. 56. A. Kicela, S. Daniele, Talanta, 2006, 68, p.1632. 57. K. B. Male, S. Hrapovic, J. H. T. Luong, Analyst, 2007, 132, p.1254. 58. J. Lu, I. Do, L. T. Drzal, R. M. Worden, I. Lee, ACS Nano, 2008, p.1825. 59. D. Wen, X. Zou, Y. Liu, L. Shang, S. Dong, Talanta, 2009, 79, p.1233. 60. S. Chakraborty, C. R. Raj, Biosens. Bioelectron., 2009, 24, p.3264. 61. X. Peng, D. He, S. Luo, Q. Cai, Sensors and Actuators B, 2009, 137, p. 134. 62. H. Angerstein-Kozlowska, B. E. Conway, W. B. A. Sharp, Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 43, p.9. 63. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc., 1999, 146, p.3750. 64. L. Newman(Ed.),American Chemical Society, 1993, p.300. 65. T. R. Todd, L. W. Cover, Pittcon’97, 1997, p.16. 66. T. Ibusuki, Atmos. Environ., 1983, 17, p.393. 67. J. H. Lee, I. N. Tang, Anal. Chem., 1990, 62, p.2381. 68. A. L. Lazrus, G. L. Kok, J. A. Lind, S. N. Gitlin, B. G. Heikes, R. E. Shetter, Anal. Chem., 1986, 58, p.594. 69. J. H. Lee, I. N. Tang, Envion. Sci. Technol., 1994, 28, p.1180. 70. P. A. Tanner, A. Y. S. Wong, Anal. Chim. Acta, 1998, 370, p.279. 71. J. Meyer, U. Karst, Anal. Chim. Acta, 1999, 401, p.191. 72. J. Liu, M. Steinberg, B. J. Johnson, Chemosphere, 2003, p.815. 73. J. Kulys, Sensors and Actuators B, 1992, 9, p. 143. 74. H. Huang, P. K. Dasgupta, Z. Genfa, Anal. Chem., 1996, 68, p.2062. 75. S. Kuwata, Y. Sadaoka, Sensors and Actuators B, 2000, 65, p. 325. 76. H. Hwang, P. K. Dasgupta, Environ. Sci. Technol., 1985, 19, p.255. 77. (a) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1998, 43, 579-588. (b) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1998, 43, 2015-2024. (c) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1999, 44, 2455-2462. (d) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 1999, 44, 4573-4582. (e) S. B. Hall, E. A. Khudaish, A. L. Hart, Electrochim. Acta, 2000, 45, 3573-3579. 78. Y. Mukouyama, S. Nakanishi, H. Konishi, Y. Nakato, J. Electroanal. Chem., 1999, 473, p.156. 79. P. Karam, L. I. Halaoui, Anal. Chem., 2008, 80, p.5441. 80. S. Wasmus, E. J. Vasini, M. Krausa, H. T. Mishima, W. Vielstich, Electrochim. Acta, 1994, 39, p.23. 81. A. S. Kumar, S. Sornambikai, India J. Chem. ,2009, 48A, p.940. 82. 莊晴如,國立中興大學化學系碩士論文,2001. 83. F. H.B. Lima, E. A. Ticianelle, Electrochim. Acta, 2004, 49, p.4091. 84. J. F. E. Gootzen, A. H. Wonders, W. Visscher, R. A. van Santen, Electrochim. Acta, 1998, 43, p.1851.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16851-
dc.description.abstract本研究以電鍍修飾奈米白金網版印刷超微電極(NPt–SPUME)塗佈固態高分子電解質Nafion®(4.5±0.5 um),以安培法開發電化學雙氧水氣體感測器。不須額外添加任何保護試劑便可成功在超微碳電極表面電沉積粒徑大小均一(103±14 nm)、分布均勻之奈米白金顆粒。應用電化學安培法定量氣態雙氧水,偵測溫度與氣體流速分別為30℃與50(mL min-1),可得到良好檢量線範圍(溶液濃度5 uM-909 mM, r2 = 0.999),理論偵測極限為0.34 uM (S/N=3),此電極製備方法偵測0.5 mM H2O2相對標準誤差(RSD)為2.84%(N=80),顯示具有良好的電極製備再現性。利用液氣相差分離揮發程度不同之干擾物進而達到高選擇性偵測氣體雙氧水,並於海水、雨水、湖水、綠茶、舒跑、牛奶等六種真實水樣中添加雙氧水並估計回收率,由以上證明NPt-SPUME具有良好之選擇性與靈敏度偵測氣體雙氧水。應用性方面,使用乙醇氧化酵素(AOD)反應生成雙氧水並直接定量乙醇的濃度,檢量線範圍(溶液濃度5.15 uM-4.89 mM, r2 = 0.999),理論偵測極限為0.256zh_TW
dc.description.abstractIn this study, we develop an electrochemical amperometric H2O2 gas sensor based on a screen-printed edge band carbon ultramicroelectrode deposited with Pt nanoparticles and coated with Nafion (4.5±0.5 um) as the solid polymer electrolyte.1 Homogeneous size (103±14 nm) and distribution of Pt nanoparticles is stably deposited on the SPUME (NPt–SPUME) without either protective or capped agents. In amperometric detection, the sensor shows good linearity (5 uM–909 mM, r2=0.999) at 30 ℃ under a flow rate of N2 gas (50 mL min–1). The relative standard deviation (RSD) of reproducibility is 2.84% (n=80) for continuous determination of 0.5 mM H2O2. The detection limit was calculated as 0.34 uM (S/N=3). We detect H2O2 in gas phase with the advantage that the interference from biological species can be avoided. Real samples analysis is demonstrated for milk, tea, lake, rain, and sports drink samples with appreciable recovery values. Overall, the NPt-SPUME was found to be highly sensitive and selective towards H2O2 sensing. Finally, the use of alcohol oxidase (AOD) indirect quantitative alcohol concentration, calibration range (solution concentration of 5.15 uM-4.89 mM, r2=0.999), detection limit of 0.256 uM (S/N=3), Real samples obtained good recoveries (98.24%-103.61%) and using glucose oxidase (GOD) indirect quantitative glucose concentration, calibration range (solution concentration of 4.98 uM–13.57 mM, r2=0.999), detection limit of 0.363 uM (S/N=3).en_US
dc.description.tableofcontents第一章 緒論 1 1-1 前言 1 1-2 過氧化氫之研究背景 3 1-2-1 過氧化氫傳統鑑定方法 6 1-2-2-1 滴定法 6 1-2-2-2 化學發光法 6 1-2-2-3 吸收光譜法 8 1-2-3 過氧化氫電化學分析技術 9 1-3 氣體感測器之簡介 12 1-3-1 觸媒燃燒式氣體感測器: 14 1-3-2 半導體氣體感測器: 15 1-3-3 場效電晶體型氣體感測器 15 1-3-4 光學型氣體感測器 17 1-3-5 電化學液態電解質型氣體感測器 17 1-3-6 電化學固態電解質型氣體感測器 19 1-3-6-1 電化學電位式氣體感測器 19 1-3-6-2 電化學電流式氣體感測器 21 1-4 固態高分子電解質Nafion® 22 1-5 白金超微電極氣體感測器 24 1-6 研究目標與架構 29 第二章 實驗與藥品 32 2-1 電化學方法簡介 32 2-1-1 循環伏安法 32 2-1-2 安培法 34 2-2 儀器設備與實驗器材 35 2-3 藥品目錄與配製過程 36 2-3-1 白金超微電極偵測氣體雙氧水 37 2-3-2 氣體感測器結合氧化酵素之應用 38 2-4 實驗用酵素簡介 39 2-4-1 葡萄糖氧化酵素之簡介 39 2-4-1 酒精氧化酵素之簡介 41 2-5 奈米白金超微電極氣體感測器製備過程 42 2-5-1 奈米白金超微電極 43 2-5-2 氣體感測裝置 44 第三章 結果與討論 45 3-1 修飾奈米白金超微電極 45 3-1-1 穩定銀參考電極 46 3-1-2 電鍍電位探討 49 3-1-3 電鍍溫度探討 53 3-2 白金超微電極偵測液體雙氧水 58 3-2-1 白金電極偵測液體雙氧水之文獻回顧 58 3-2-2 NPt-SPUME之電化學行為與穩定度 64 3-2-3 NPt-SPUME對溶氧之電化學行為影響 66 3-2-4 NPt-SPUME偵測液體雙氧水 68 3-3 氣體感測裝置 72 3-3-1 偵測環境溫度探討 73 3-3-2 不同流動氣體與氣體流速之探討 75 3-4 白金超微電極偵測氣體雙氧水 77 3-4-1 文獻回顧 77 3-4-2 實驗進行與偵測原理 81 3-4-3 濃度換算與定量 84 3-4-4 NPt-SPUME偵測氣體雙氧水之電化學行為 85 3-4-5 Nafion®濃度 89 3-4-6 最佳偵測電位 91 3-4-7 校正曲線、重複性及偵測極限 92 3-4-8 NPt-SPUME氣體感測器偵測雙氧水之再現性與長效性 95 3-4-9 白金超微電極與白金環盤電極氣體感測器之比較 97 3-5 高選擇性偵測過氧化氫 100 3-5-1 干擾物影響 100 3-5-2 不同緩衝溶液影響 104 3-5-3 複雜基質樣品影響 106 3-6 白金電極氣體感測器結合氧化酵素之應用 109 3-6-1 白金電極氣體感測器結合酒精氧化酵素之應用 111 3-6-1-3 氧氣濃度之影響 113 3-6-1-4 探討酵素的含量與酸鹼度 115 3-6-1-5 校正曲線、偵測極限及重複性 117 3-6-1-6 真實樣品之分析 120 3-6-2 白金電極氣體感測器結合葡萄糖氧化酵素之應用 124 3-6-2-3 氧氣濃度之影響 126 3-6-2-4 探討GOD酵素的濃度與酸鹼度 128 3-6-2-5 校正曲線、偵測極限及重複性 131 第四章 結論與未來展望 134 4-1結論 134 4-2 未來展望 136 4-2-1 血糖之分析 137 4-2-2氣體感測器與氧化酵素之結合與應用 145 4-2-3 白金超微電極之氧氣應用 147 附錄: 149zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0907201119443200en_US
dc.subjectplatinum nanoparticleen_US
dc.subject奈米白金zh_TW
dc.subjectgas sensoren_US
dc.subject氣體感測器zh_TW
dc.title奈米白金修飾超微碳電極於電化學氣體感測器之研發與應用zh_TW
dc.titleDevelopment and Application of Gas sensor by Using Platinum Nanoparticle Modified Ultramicro Carbon Electrodeen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.