Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16853
標題: 非平面鈷卟啉的氧化
Oxidation of Nonplanar cobalt porphyrins
作者: 江孟儒
Chiang, Meng-Ju
關鍵字: Ferromagnetic coupling
鐵磁偶合
Anti-Ferromagnetic coupling
Biradical
反鐵磁偶合
雙電子自由基
出版社: 化學系所
引用: (1) Dickinson, R. E. In. The Proteins; Neurath, H., Ed.; Academic Press: New York, 1964; Vol. 2, p 634. (2) Perutz, M.; Rossman, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. C. T. Nature 1960, 185, 416. (3) Takano, T.; Trus, B. L.; Mandel, N.; Mandel, G.; Kallai, O. B.; Swanson, R.; Dickerson, R. E. J. Biol. Chem. 1977, 252, 776-785. (4) Scheidt, W. R.; Reed, C. A. Chem. Rev. 1981, 81, 543-555. (5) Goff, H.; La Mar, G. N.; Reed, C. A. J. Am. Chem. Soc. 1977, 99, 3641-3646. (6) Jentzen, W.; Simpson, M. C.; Hobbs, J. D.; Song, X.; Ema, T.; Nelson, N. Y.; Medforth, C. J.; Smith, K. M.; Veyrat, M.; Mazzanti, M.; Ramasseul, R.; Marchon, J. C.; Takeuchi, T.; Goddard, W. A.; Shelnutt, J. A. J. Am. Chem. Soc. 1995, 117, 11085-11097. (7) Barkigia, K. M.; Dolores Berber, M.; Fajer, J.; Medforth, C. J.; Renner, M. W.; Smith, K. M. J. Am. Chem. Soc. 1990, 112, 8851-8857. (8) Cheng, R.-J.; Chen, P.-Y.; Gau, P.-R.; Chen, C.-C.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 2563-2569. (9) Ema, T.; Senge, M. O.; Nelson, N. Y.; Ogoshi, H.; Smith, K. M. Angew, Chem. Int. Ed. Engl. 1994, 33, 1879. (10) Senge, M. O.; Ema, T.; Smith, K. M. Chem. Commun. 1995, 733. (11) Yasui, M.; Harada, S.; Kai, Y.; Kasai, N.; Kusunoki, M.; Matsuura, Y. J. Biochem. 1992, 111, 317-324. (12) Finzel, B. C.; Weber, P. C.; Hardman, K. D.; Salemme, F. R. J. Mol. Biol. 1985, 186, 627-643. (13) Ema, T.; Senge, M. O.; Nelson, N. Y.; Ogoshi, H.; Smith, K. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 1879. (14)Senge, M. O.; Ema, T.; Smith, K. M. J. Chem. Soc., Chem. Commun. 1995, 733. (15) Cheng, R.-J.; Chen, P.-Y.; Peng, S.-M. submitted (16) Goff, H. M. Nuclear Magnetic Resonance of Iron Porphyrins. In Iron Porphyrin.; Lever, A. B. P.; Gray, H. B., Eds.; Physical Bioinorganic Chemistry series 1; Addison-Wesley: Reading, MA, 1983; p 237-281. (17) Goff, H.; La Mar, G. N.; Reed, C. A. J. Am. Chem. Soc. 1977, 99, 3641 (18) Kurland, R. J.; McGarvey, B. R. J. Magn. Resonance. 1970, 2, 286. (19) Jesson, J. P. The Paramagnetic Shift. In NMR of Paramagnetic Molecules.; La Mar, G. N., Horrocks, W. D., Holm, R. H., Eds.; Academic Press: New York, 1973; p 1-53. (20) McConnell, H. M. J. Chem. Phys. 1961, 35, 1312. (21) Walker, F. A. Proton NMR and EPR Spectroscopy of Paramagnetic Metalloporphyrins. In The Porphyrin Handbook.; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:, 2000; Vol. 5, p 165-299. (22) Goff, H. M. J. Am. Chem. Soc. 1981, 103, 3714 (23) Karplus, M.; Fraenkel, G. K. J. Chem. Phy. 1961, 35, 1312. (24) La Mar, G. N.; Walker, F. A. Nuclear Magnetic Resonance of Paramagnetic. In The Porphyrins. 1st.; Dolphin, D., Eds.; Academic Press: New York, 1979; Vol. 4, p 61-157. (25) La Mar, G. N. Biological Applications of Magnetic Resonance. In Biological Applications of Magnetic Resonance.; Shulman, R. G., Eds.; Academic Press: New York, 1979; p 305-343. (26) Walker, F. A.; Simonis, U. Proton NMR Spectroscopy. In NMR of Paramagnetic Molecules.; Berliner, L. J., Reuben, J., Eds.; New York, 1993; Vol. 12, p 133. (27) Shokhirev, N. V.; Walker, F. A. J. Phys. Chem. 1995, 99, 17795. (28) Gouterman, M. J. Chem. Phys. 1959, 30, 1139. (29) Zerner, M. C. Semiempirical Molecular Orbital Methods Ed.;Lipkowitz, K. B. and Boyd, D. B., Ed.;VCH Publishers: New York, 1991; Vol. 2, p 313-365. (30) Zerner, M. C. Intermediate Neglect of Differential Overlap Calculations on the Electronic Spectra of Transition Metal ComplexesEd.;Russo, N. and Salahub, D. R., Ed.;Kluwer Academic Publishers: Netherlands, 1996; Vol. 2 , p 493-531. (31) Edwards, W. D.; Diercksen, G. H. F.; Zerner, M. C. J. Mol. Struct. (Theochem). 1989, 199, 137-148. (32) Mispelter, J.; Momenteau, M.; Lhoste, J. M. J. Chem. Soc. Chem. Commun. 1979, 808-810. (33) 陳炳宇,中興大學化學系博士論文,2001. (34) Ghosh, A.; Gonzalez, E.; Vangberg, T. J. Phys. Chem. B. 1999, 103, 1363-1367. (35) Gedye, R. N.; Smith, F. E.; Westaway, K. C. Tetrahedron Lett.1986, 27, 279-282 (36) Kappe, C. O.; Stadler, A. Microwaves in organic and medicinal chemistry. (37) A. Petit; A. Loupy; Ph. Maillard and M. Momenteau, Synthetic Communications 1992, 22, 1137-1142 (38) S. M. S. Chauhan; B. B. Sahoo; K. A. Srinivas, Synthetic Communications 2001, 31, 33-37 (39) Dilek Kiper Dogutan; Marcin Ptaszek; and Jonathan S. Lindsey, J. Org. Chem. 2008, 73, 6187-6201 (40) Mark O. Liu; Chia-Hon Tai; Andrew Teh Hu, Materials Chemistry and Physics 2005, 92, 322-326 (41) Mark O. Liu; Andrew Teh Hu, Journal of Organometallic Chemistry 2004, 689, 2450-2455 (42) Nidhi Jain; Anil Kumar; S. M. S. Chauhan, Synthetic Communication, 2005, 35, 1223-1230 (43) Michelle L. Dean; Jason R. Schmink; Nicholas E. Leadbeater; Christian Bruckner, Dalton Trans., 2008, 1341-1345 (1) Rothemund, P. J. J. Am Chem. Soc. 1935, 57, 2010. (2) Rothemund, P. J.; Menotti, G. D. J. Am Chem. Soc. 1941, 63, 267. (3) Alder, A. D.; Sklar, L.; Longo, F. R. J. Heterocycl. Chem. 1968, 5, 669. (4) Sessler, J. L.; Mozaffari, A.; Johnson, M. R. Org. Synth. 1991, 70, 68. (5) Ono, M.; Lattmann, R.; Imomota, K.; Lehmann, C.; Fruh, T.; Eschenmoser, A. Croat. Chem. Acta, 1985, 58, 627. (6) Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew, Chem. Int. Ed. Engl. 1971, 10, 330. (7) Whitlock, H. W.; Hanauer, R. J. J. Org. Chem. 1968, 33, 2169 (8) Eisner, U.; Lichtarowicz, A.; Linstead, R. P. J. Chem. Soc. 1957,733. (9) Inhoffen, H. H.; Fuhrhop, J. H.; Voigt, H.; Brockmann, J. R. F. Ann. Chem. 1966, 695, 183. (10) Siedel, W.; Winkler, F. F. Ann. Chem. 1943, 554, 162. (11) Barton, D. H. R.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985, 1098. (12) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron. 1990, 46, 7483. (13) Ono, N.; Kawamura, H.; Bougauchi, M. ; Maruyama, K. Tetrahedron. 1990, 46. (14) Aoyagi, K. ; Haga, T. ; Toi, H. ; Aoyama, Y. ; Mizutani, T. ; Ogoshi, H. Bull. Chem. Soc. Jpn. 1997, 70, 937. (15) Dolphin, D. J. Heterocyclic Chem. 1970, 7, 275. (16) Evens, B.; Smith, K. M.; Fuhrhop, J. H. Tetrahedron Lett. 1977, 443. (17) Lindsey, J.; Wagner, R. J. Org. Chem. 1987, 52, 827-836. (1) Renner, M. W.; Barkigia, K. M.; Zhang, Y.; Medforth, C. J.; Smith, K. M.; Fajer, J. Journal of the American Chemical Society 1994, 116, 8582. (2) Benecky, M. J.; Frew, J. E.; Scowen, N.; Jones, P.; Hoffman, B. M. Biochemistry 1993, 32, 11929. (3) Fujii, H.; Yoshimura, T.; Kamada, H. Inorganic Chemistry 1996, 35, 2373. (4) Wayland, B. B.; Abd-Elmageed, M. E. Journal of the American Chemical Society 1974, 96, 4809. (5) Deeth, R. J. Journal of the American Chemical Society 1999, 121, 6074. (6) Sparks, L. D.; Medforth, C. J.; Park, M. S.; Chamberlain, J. R.; Ondrias, M. R.; Senge, M. O.; Smith, K. M.; Shelnutt, J. A. Journal of the American Chemical Society 1993, 115, 581. (7) Lin, C.-Y.; Hu, S.; Rush, T.; Spiro, T. G. Journal of the American Chemical Society 1996, 118, 9452.
摘要: π cation radical of metalloporphyrins play an important role in oxidation catalysis or electron transport in many diverse biological system such as the intimate compound I of HRP, CPO and CAT which are all iron porphyrin derivatives. Although these biological mechanical processes related to the coupling between central metal and porphyrin cation radical still remain ambiguous, one intriguing occasion with respect to the deformation of macrocycle might get involved. To elucidate this difficult issue, we initiate the one electron oxidation of cobalt(II) porphyrin systems which are saddle-shaped deformation e.g. OMTPP and OETPP to facilitate the understanding in spin coupling between two individual electron spins localized in central cobalt (dz2 orbital) and macrocycle (a1u or a2u orbital) respectively. Aside from, the influence of axial ligands which are obtained after single electron oxidation was also discussed by means of varying the halogen oxidants (I2, Br2 and Cl2). Through a series of analyses of UV-Vis, EPR, NMR, X-ray and DFT calculations, these five-coordinate CoII(OETPP)+ •X (X=Cl, Br, I) complexes have strong antiferromagnetically coupled in room temperature associated with a dxy2dxz2dyz2dz21a2u1(S=0) and ferromagnetically coupled in liquid helium temperature associated with a dxy2dxz2dyz2dz21a1u1(S=0). In the two electron oxidation, the CoIII(OETPP)Br2 complex was obtained and a corresponding a1u type radical species proved by EPR interpret that five-coordinate CoII(OETPP)+ •X (X=Cl, Br, I) complexes approve dxy2dxz2dyz2dz21a1u1(S=1) as ground state more than dxy2dxz2dyz2dz21a2u1(S=0).
大環氧化的金屬卟啉π陽離子自由基及其衍生物在血紅素蛋白催化各種不同氧化途徑和光合作用有機體內的電子傳遞方式一直扮演相當重要的角色,較有名的例子如HRP、CPO、CAT之共同中心活性體-compound I,在不同的酵素間扮演相關重要的角色。相關文獻除了觀察到卟啉大環變形以及第二軸配機種類不同影響生物活性外,對於其如何影響金屬卟啉在催化上所扮演的角色以及電子偶合情況能需要作進一步的了解與探討。已知對於平面二價鈷卟啉系統為低自旋之電子組態,我們進一步以非平面系統為起始點,利用電子自旋共振光譜儀可以幫助我們了解軸配基如何調控中心金屬dz2軌域與卟啉大環之間鍵結特性,企圖模擬出Compound I於不同酵素間所處的情況,進而了解相關機制。 透過電腦模擬軟體的幫助下,我們以更新二價鈷卟啉其複雜電子自旋共振光譜儀所呈現出來的重要參數。透過CoII(OETPP)+·X (X = Cl, Br, I)之低溫EPR光譜圖,我們發現較為罕見的雙電子自由基訊號,其所呈現強烈的順磁光譜特性,有別於常溫NMR所測得之逆磁光譜特性,因此我們進一步合成出雙電子氧化之CoIII(OETPP)+·Br2,得到一個電子位於卟啉大環上之EPR光譜,從吸收峰型式間接證實a1u自由基之可信度;爾後透過ADF理論計算,幫助我們解讀NMR、EPR所呈現出來的光譜特性。最後大膽提出此一系列錯化物其電子基態為dxy2dxz2dyz2dz21a1u1 (S = 1),第一激發態dxy2dxz2dyz2dz21a2u1 (S = 0)之可能性。
URI: http://hdl.handle.net/11455/16853
其他識別: U0005-0908201114554600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908201114554600
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.