請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/16880
標題: (1)製備殼核球型中孔洞奈米金屬@矽複合材料: Metal/PVP@MCM-41 (2)利用水熱法合成新型架構之錳氧化物
(1)Metal/PVP@MCM-41 Core-Shell Synthesis of a Spherical, Mesoporous Silica/Metal Nanocomposite: Metal/PVP@MCM-41 (2)Hydrothermal Synthesis of Manganese Oxide with Novel Architectures
作者: 陳隆京
Chen, Lung-Jing
關鍵字: hydrothermal
水熱
solvothermal
nano
metal
particle
alloy
platinum
siliver
catalyst
hydrogenation
manganese oxide
sphere
schist-like
electrochemical capacitor
water treatment
溶劑熱
殼核
奈米
金屬
粒子
合金
白金

催化
氫化
錳氧化物
球型
片岩狀
電化學電容
水處理
出版社: 化學系所
引用: Reference (1) Faraday Philos Trans 1857, 147, 145. (2) Hashmi, A. S. K.; Hutchings, G. J. Angewandte Chemie International Edition 2006, 45, 7896. (3) Kamat, P. V. The Journal of Physical Chemistry B 2002, 106, 7729. (4) Alschinger, M.; Maniak, M.; Stietz, F.; Vartanyan, T.; Träger, F. Applied Physics B: Lasers and Optics 2003, 76, 771. (5) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. (6) Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. Journal of the American Chemical Society 2001, 123, 1471. (7) Prodi, L. New Journal of Chemistry 2005, 29, 20. (8) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. (9) Letfullin, R. R.; Joenathan, C.; George, T. F.; Zharov, V. P. Nanomedicine 2006, 1, 473. (10) El-Sayed, M. A. Accounts of Chemical Research 2001, 34, 257. (11) Collier, C. P.; Vossmeyer, T.; Heath, J. R. Annual Review of Physical Chemistry 1998, 49, 371. (12) Zhao, M.; Crooks, R. M. Angewandte Chemie International Edition 1999, 38, 364. (13) Chen, A.; Holt-Hindle, P. Chemical Reviews 2010, 110, 3767. (14) Lu, A.-H.; Salabas, E. L.; Schüth, F. Angewandte Chemie International Edition 2007, 46, 1222. (15) Alexandridis, P. Chemical Engineering & Technology 2011, 34, 15. (16) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemical Reviews 2005, 105, 1025. (17) Masala, O.; Seshadri, R. Annual Review of Materials Research 2004, 34, 41. (18) Mandal, M.; Ghosh, S. K.; Kundu, S.; Esumi, K.; Pal, T. Langmuir 2002, 18, 7792. (19) Caruso, R. A.; Ashokkumar, M.; Grieser, F. Langmuir 2002, 18, 7831. (20) Bönnemann, H.; Richards, Ryan M. European Journal of Inorganic Chemistry 2001, 2001, 2455. (21) Yoshimura, M.; Byrappa, K. Journal of Materials Science 2008, 43, 2085. (22) Chen, X.; Mao, S. S. Chemical Reviews 2007, 107, 2891. (23) M. T. Reetz, W. H., S. A. Quaiser Active Metals, 1996. (24) Calvert, S. E.; Nielsen, B.; Fontugne, M. R. Nature 1992, 359, 223. (25) Journal of Biomedical Nanotechnology 2007, 3, 301. (26) Roucoux, A.; Schulz, J.; Patin, H. Chemical Reviews 2002, 102, 3757. (27) Astruc, D.; Lu, F.; Aranzaes, J. R. Angewandte Chemie International Edition 2005, 44, 7852. (28) Bradley, J. S. Clusters and Colloids; VCH,Weinheim, 1994. (29) Aiken, J. D.; Finke, R. G. Journal of Molecular Catalysis A: Chemical 1999, 145, 1. (30) Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Materials Chemistry and Physics 2005, 94, 449. (31) Pastoriza-Santos, I.; Liz-Marzan, L. M. Langmuir 2002, 18, 2888. (32) Mu, X.-D.; Evans, D. G.; Kou, Y. Catalysis Letters 2004, 97, 151. (33) Lo, S. H. Y.; Wang, Y.-Y.; Wan, C.-C. Journal of Colloid and Interface Science 2007, 310, 190. (34) Nemamcha, A.; Moumeni, H.; Rehspringer, J. L. Physics Procedia 2009, 2, 713. (35) Liu, M.; Zhang, J.; Liu, J.; Yu, W. W. Journal of Catalysis 2011, 278, 1. (36) Zhang, Y.; Yu, J.; Niu, H.; Liu, H. Journal of Colloid and Interface Science 2007, 313, 503. (37) Kong, Q.; Chen, X.; Yao, J.; Xue, D. Nanotechnology 2005, 16, 164. (38) Nam, S.; Parikh, D. V.; Condon, B. D.; Zhao, Q.; Yoshioka-Tarver, M. 2011, 1. (39) Luo, C.; Zhang, Y.; Zeng, X.; Zeng, Y.; Wang, Y. Journal of Colloid and Interface Science 2005, 288, 444. (40) Bonder, M. J.; Zhang, Y.; Kiick, K. L.; Papaefthymiou, V.; Hadjipanayis, G. C. Journal of Magnetism and Magnetic Materials 2007, 311, 658. (41) Khalil, H.; Mahajan, D.; Rafailovich, M.; Gelfer, M.; Pandya, K. Langmuir 2004, 20, 6896. (42) Khanna, P. K.; Gokhale, R.; Subbarao, V. V. V. S.; Vishwanath, A. K.; Das, B. K.; Satyanarayana, C. V. V. Materials Chemistry and Physics 2005, 92, 229. (43) Pyne, S.; Sarkar, P.; Basu, S.; Sahoo, G. P.; Bhui, D. K.; Bar, H.; Misra, A. 2010, 1. (44) Roy, P. S.; Bagchi, J.; Bhattacharya, S. K. Transition Metal Chemistry 2009, 34, 447. (45) Zielinska, A.; Skwarek, E.; Zaleska, A.; Gazda, M.; Hupka, J. Procedia Chemistry 2009, 1, 1560. (46) Wu, S.-H.; Chen, D.-H. Journal of Colloid and Interface Science 2004, 273, 165. (47) Seip, C. T.; O''Connor, C. J. Nanostructured Materials 1999, 12, 183. (48) Rodriguez-Gonzalez, B.; Burrows, A.; Watanabe, M.; Kiely, C. J.; Liz Marzan, L. M. Journal of Materials Chemistry 2005, 15, 1755. (49) Chen, H. M.; Liu, R.-S. Journal of Physical Chemistry C 2011, 115, 3513. (50) Yu, Y.; Zhao, Y.; Huang, T.; Liu, H. Materials Research Bulletin 2010, 45, 159. (51) Lee, M.-H.; Oh, S.-G.; Suh, K.-D.; Kim, D.-G.; Sohn, D. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 210, 49. (52) Khan, Z.; Al-Thabaiti, S. A.; El-Mossalamy, E. H.; Obaid, A. Y. Colloids and Surfaces B: Biointerfaces 2009, 73, 284. (53) Kang, Q.; Gao, B.; Hu, J.; Shen, D. Adsorption 2005, 11, 519. (54) Zhang, X.; Tsang, K.-Y.; Chan, K.-Y. Journal of Electroanalytical Chemistry 2004, 573, 1. (55) Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Materials Chemistry and Physics 2005, 94, 449. (56) Angshuman Pal, S. S. a. S. D. African Physical Review 2007, 1, 1. (57) Haruta, M. The Chemical Record 2003, 3, 75. (58) Ishida, T.; Haruta, M. Angewandte Chemie 2007, 119, 7288. (59) Daniel, M.-C.; Astruc, D. Chemical Reviews 2003, 104, 293. (60) Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century, 2005. (61) Narayanan, R.; El-Sayed, M. A. Journal of the American Chemical Society 2003, 125, 8340. (62) Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Nano Letters 2007, 7, 3097. (63) Tong; Kim, H. S.; Babu, P. K.; Waszczuk, P.; Wieckowski, A.; Oldfield, E. Journal of the American Chemical Society 2001, 124, 468. (64) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. Journal of Power Sources 2006, 155, 95. (65) Narayanan, R.; El-Sayed, M. A. Nano Letters 2004, 4, 1343. (66) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078. (67) Lee, J.-S.; Han, M. S.; Mirkin, C. A. Angewandte Chemie International Edition 2007, 46, 4093. (68) Slocik, J. M.; Zabinski, J. S.; Phillips, D. M.; Naik, R. R. Small 2008, 4, 548. (69) Pal, S.; Tak, Y. K.; Song, J. M. Applied and Environmental Microbiology 2007, 73, 1712. (70) Sondi, I.; Salopek-Sondi, B. Journal of Colloid and Interface Science 2004, 275, 177. (71) Gogoi, S. K.; Gopinath, P.; Paul, A.; Ramesh, A.; Ghosh, S. S.; Chattopadhyay, A. Langmuir 2006, 22, 9322. (72) Bedford, R. B.; Singh, U. G.; Walton, R. I.; Williams, R. T.; Davis, S. A. Chemistry of Materials 2005, 17, 701. (73) Lang, H.; Maldonado, S.; Stevenson, K. J.; Chandler, B. D. Journal of the American Chemical Society 2004, 126, 12949. (74) Kormann, H.-P.; Schmid, G.; Pelzer, K.; Philippot, K.; Chaudret, B. Zeitschrift für anorganische und allgemeine Chemie 2004, 630, 1913. (75) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. Journal of the American Chemical Society 2002, 124, 14127. (76) Bertarione, S.; Scarano, D.; Zecchina, A.; Johánek, V.; Hoffmann, J.; Schauermann, S.; Libuda, J.; Rupprechter, G.; Freund, H.-J. Journal of Catalysis 2004, 223, 64. (77) Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Journal of the American Chemical Society 2004, 126, 10657. (78) Guczi, L.; Beck, A.; Horváth, A.; Koppány, Z.; Stefler, G.; Frey, K.; Sajó, I.; Geszti, O.; Bazin, D.; Lynch, J. Journal of Molecular Catalysis A: Chemical 2003, 204-205, 545. (79) Lipshutz, B. H.; Taft, B. R. Angewandte Chemie 2006, 118, 8415. (80) Lipshutz, B. H.; Blomgren, P. A. Journal of the American Chemical Society 1999, 121, 5819. (81) Baleizão, C.; Gigante, B.; García, H.; Corma, A. Tetrahedron 2004, 60, 10461. (82) Starvin, A. M.; Rao, T. P. Talanta 2004, 63, 225. (83) Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Journal of the American Chemical Society 2003, 125, 11186. (84) Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou; Sun, G.; Xin, Q. The Journal of Physical Chemistry B 2003, 107, 6292. (85) Rahim Hekmat Shoar, M. H., Maryam Farzaneh,and Reihaneh Malakouti Synthetic Communications 2009, 39, 1742. (86) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W. Journal of the American Chemical Society 1992, 114, 10834. (87) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. (88) Xiu S. Zhao, G. Q. M. L., and Graeme J. Millar Industrial & Engineering Chemistry Research 1996, 35, 2075. (89) Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F. Chemistry of Materials 1994, 6, 1176. (90) Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L. Chemistry of Materials 1994, 6, 2317. (91) Chen, C.-Y.; Li, H.-X.; Davis, M. E. Microporous Materials 1993, 2, 17. (92) Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Science 1993, 261, 1299. (93) Firouzi, A.; Kumar, D.; Bull, L.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S.; Zasadzinski, J.; Glinka, C.; Nicol, J.; et, a. Science 1995, 267, 1138. (94) Inagaki, S.; Fukushima, Y.; Kuroda, K. In Studies in Surface Science and Catalysis; J. Weitkamp, H. G. K. H. P., Hölderich, W., Eds.; Elsevier: 1994; Vol. Volume 84, p 125. (95) Rioux, R. M.; Song, H.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. The Journal of Physical Chemistry B 2004, 109, 2192. (96) Demel, J.; Čejka, J.; Bakardjieva, S.; Štěpnička, P. Journal of Molecular Catalysis A: Chemical 2007, 263, 259. (97) Glomm, W. R.; Øye, G.; Walmsley, J.; Sjöblom, J. Journal of Dispersion Science and Technology 2005, 26, 729. (98) Chao, K.-J.; Cheng, M.-H.; Ho, Y.-F.; Liu, P.-H. Catalysis Today 2004, 97, 49. (99) Guo, X.-J.; Yang, C.-M.; Liu, P.-H.; Cheng, M.-H.; Chao, K.-J. Crystal Growth & Design 2004, 5, 33. (100) Chao, K. j.; Chang, Y. p.; Chen, Y. c.; Lo, A. S.; Phan, T. h. The Journal of Physical Chemistry B 2006, 110, 1638. (101) Das, D. D.; Sayari, A. Journal of Catalysis 2007, 246, 60. (102) Krawiec, P.; Kockrick, E.; Simon, P.; Auffermann, G.; Kaskel, S. Chemistry of Materials 2006, 18, 2663. (103) Mastalir, Á.; Rác, B.; Király, Z.; Molnár, Á. Journal of Molecular Catalysis A: Chemical 2007, 264, 170. (104) Suib, S. L. Chemical Reviews 1993, 93, 803. (105) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature 1994, 368, 317. (106) Burns, R. G.; Burns, V. M. Manganese Dioxide Symposium, Toyko 1980, 2, 97. (107) TURNER, S.; BUSECK, P. R. Science 1981, 212, 1024. (108) Feng, Q.; Kanoh, H.; Ooi, K. Journal of Materials Chemisrty 1999, 9, 319. (109) Wadsley, A. Acta Crystallographica 1953, 6, 433. (110) Koksbang, R.; Barker, J.; Shi, H.; Saïdi, M. Y. Solid State Ionics 1996, 84, 1. (111) Feng, Q.; Miyai, Y.; Kanoh, H.; Ooi, K. Langmuir 1992, 8, 1861. (112) Boullay, P.; Hervieu, M.; Raveau, B. Journal of Solid State Chemistry 1997, 132, 239. (113) Giovanoli, R.; Stähli, E.; Feitknecht, W. Helvetica Chimica Acta 1970, 53, 453. (114) Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Chem. Mat. 1995, 7, 1722. (115) Takada, T.; Hayakawa, H.; Kumagai, T.; Akiba, E. Journal of Solid State Chemistry 1996, 121, 79. (116) Ching, S.; Roark, J. L.; Duan, N.; Suib, S. L. Chem. Mat. 1997, 9, 750. (117) Cao, J.; Zhu, Y. C.; Bao, K. Y.; Shi, L.; Liu, S. Z.; Qian, Y. T. Journal of Physical Chemistry C 2009, 113, 17755. (118) Sun, X.; Liu, J.; Li, Y. Chemistry - A European Journal 2006, 12, 2039. (119) Li, W. N.; Yuan, J. K.; Gomez-Mower, S.; Sithambaram, S.; Suib, S. L. Journal of Physical Chemistry B 2006, 110, 3066. (120) Maxwell, K. H.; Butler, G.; Thirsk, H. R. Journal of the Chemical Society (Resumed) 1952, 4210. (121) Ching, S.; Neupane, R. P.; Gray, T. P. Journal of Chemical Education 2006, 83, 1674. (122) Wong, S. T.; Cheng, S. Inorganic Chemistry 1992, 31, 1165. (123) Chen, C. C.; Golden, D. C.; Dixon, J. B. Clays and Clay Minerals 1986, 34, 7. (124) J., V.; Ph.D. University of Connecticut, Storrs, CT 2006. (125) Suib, S. L. Accounts of Chemical Research 2008, 41, 479. (126) Sithambaram, S.; Ding, Y.; Li, W.; Shen, X.; Gaenzler, F.; Suib, S. L. Green Chemistry 2008, 10, 1029. (127) Kumar, R.; Garces, L. J.; Son, Y.-C.; Suib, S. L.; Malz Jr, R. E. Journal of Catalysis 2005, 236, 387. (128) Ghosh, R.; Shen, X.; Villegas, J. C.; Ding, Y.; Malinger, K.; Suib, S. L. The Journal of Physical Chemistry B 2006, 110, 7592. (129) Brock, S. L.; Duan, N.; Tian, Z. R.; Giraldo, O.; Zhou, H.; Suib, S. L. Chem. Mat. 1998, 10, 2619. (130) Ramesh, K.; Chen, L.; Chen, F.; Liu, Y.; Wang, Z.; Han, Y.-F. Catalysis Today 2008, 131, 477. (131) Liotta, L. F.; Di Carlo, G.; Pantaleo, G.; Venezia, A. M. Catalysis Today 2010, 158, 56. (132) Schubert, M. M.; Plzak, V.; Garche, J.; Behm, R. J. Catalysis Letters 2001, 76, 143. (133) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Journal of Catalysis 1993, 144, 175. (134) Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. Journal of Catalysis 1999, 182, 430. (135) Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. Catalysis Letters 1997, 44, 83. (136) Park, S. M.; Kim, M.-Y.; Kim, E. S.; Han, H.-S.; Seo, G. Applied Catalysis A: General 2011, 395, 120. (137) Yu, C.; Dong, X.; Guo, L.; Li, J.; Qin, F.; Zhang, L.; Shi, J.; Yan, D. The Journal of Physical Chemistry C 2008, 112, 13378. (138) Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Advanced Materials 2006, 18, 2426. (139) Fei, J. B.; Cui, Y.; Yan, X. H.; Qi, W.; Yang, Y.; Wang, K. W.; He, Q.; Li, J. B. Advanced Materials 2008, 20, 452. (140) Zhai, Y.; Zhai, J.; Zhou, M.; Dong, S. Journal of Materials Chemistry 2009, 19, 7030. (141) Chou, S.-L.; Wang, J.-Z.; Chew, S.-Y.; Liu, H.-K.; Dou, S.-X. Electrochemistry Communications 2008, 10, 1724. (142) Whittingham, M. S. MRS BULLETIN 2008, 33, 411. (143) Winter, M.; Brodd, R. J. Chemical Reviews 2004, 104, 4245. (144) Wang, D.-W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H.-M. Angewandte Chemie International Edition 2008, 47, 373. (145) Lokhande, C. D.; Dubal, D. P.; Joo, O.-S. Current Applied Physics 2011, 11, 255. (146) Pang, S.-C.; Anderson, M. A.; Chapman, T. W. Journal of the Electrochemical Society 2000, 147, 444. (147) Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mat. 2004, 16, 3184. (148) Devaraj, S.; Munichandraiah, N. Journal of Physical Chemistry C 2008, 112, 4406. (149) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Journal of the American Chemical Society 2008, 130, 2730. (150) Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T. Advanced Materials 2004, 16, 918. (151) Chen, L.; Sun, L.-J.; Luan, F.; Liang, Y.; Li, Y.; Liu, X.-X. Journal of Power Sources 2010, 195, 3742. (152) Liu, R.; Lee, S. B. Journal of the American Chemical Society 2008, 130, 2942. (153) Chu, H. Y.; Lai, Q. Y.; Wang, L.; Lu, J. F.; Zhao, Y. Ionics 2010, 16, 233. (154) Yan, J.; Fan, Z.; Wei, T.; Cheng, J.; Shao, B.; Wang, K.; Song, L.; Zhang, M. Journal of Power Sources 2009, 194, 1202. (155) Jin, X.; Zhou, W.; Zhang, S.; Chen, G. Z. Small 2007, 3, 1513. (156) Mann, S.; Ozin, G. A. Nature 1996, 382, 313. (157) Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature 1999, 398, 223. (158) Ozin, G. A. Accounts of Chemical Research 1997, 30, 17. (159) Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692. (160) Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304. (161) Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152. (162) Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O''Keeffe, M. Nature 2005, 437, 716. (163) Baldi, M.; Escribano, V. S.; Amores, J. M. G.; Milella, F.; Busca, G. Applied Catalysis B: Environmental 1998, 17, L175. (164) Brock, S. L.; Sanabria, M.; Suib, S. L.; Urban, V.; Thiyagarajan, P.; Potter, D. I. The Journal of Physical Chemistry B 1999, 103, 7416. (165) Brock, S. L.; Sanabria, M.; Nair, J.; Suib, S. L.; Ressler, T. The Journal of Physical Chemistry B 2001, 105, 5404. (166) C. J. Brinker; Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1990. (167) H. G. Karge; Weitkamp, J. Molecular Sieves - Science and Technology: Characterization II. (168) Chigane, M.; Ishikawa, M. Journal of the Electrochemical Society 2000, 147, 2246. (169) Navrotsky, A.; Ma, C.; Lilova, K.; Birkner, N. Science 2010, 330, 199. (170) Ghodbane, O.; Pascal, J.-L.; Fraisse, B.; Favier, F. d. r. ACS Applied Materials & Interfaces 2010, 2, 3493. (171) Oku, M.; Hirokawa, K.; Ikeda, S. Journal of Electron Spectroscopy and Related Phenomena 1975, 7, 465. (172) Reyes-Coronado, D.; et al. Nanotechnology 2008, 19, 145605. (173) Gnanam, S.; Rajendran, V. Journal of Sol-Gel Science and Technology 2011, 58, 62. (174) Tian, Z. R.; Tong, W.; Wang, J. Y.; Duan, N. G.; Krishnan, V. V.; Suib, S. L. Science 1997, 276, 926. (175) Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. ACS Nano 2010, 4, 2822. (176) Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Carbon 2010, 48, 3825. (177) Jeong, Y. U.; Manthiram, A. Journal of the Electrochemical Society 2002, 149, A1419. (178) Zhang, L.-C.; Liu, Z.-H.; Lv, H.; Tang, X.; Ooi, K. Journal of Physical Chemistry C 2007, 111, 8418. (179) Jana, S.; Basu, S.; Pande, S.; Ghosh, S. K.; Pal, T. Journal of Physical Chemistry C 2007, 111, 16272. (180) Sinha, A. K.; Basu, M.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Journal of Physical Chemistry C 2010, 114, 21173. (181) Subramanian, V.; Zhu, H.; Wei, B. Pure and Applied Chemistry 2008, 80, 2327. (182) Liu, Z.; Ma, R.; Ebina, Y.; Takada, K.; Sasaki, T. Chemistry of Materials 2007, 19, 6504. (183) Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49. (184) Sarangapani, S.; Tilak, B. V.; Chen, C. P. Journal of the Electrochemical Society 1996, 143, 3791. (185) Yu, G. H.; Hu, L. B.; Vosgueritchian, M.; Wang, H. L.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. N. Nano Lett. 2011, 11, 2905. (186) Peng, Y.; Chen, Z.; Wen, J.; Xiao, Q.; Weng, D.; He, S.; Geng, H.; Lu, Y. Nano Research 2011, 4, 216. (187) Yuan, J.; Liu, Z.-H.; Qiao, S.; Ma, X.; Xu, N. Journal of Power Sources 2009, 189, 1278.
摘要: 此篇畢業論文包含下述兩個主題: (1)製備殼核球型中孔洞奈米金屬@矽複合材料:Metal/PVP@MCM-41(Metal=Pt, Ag); (2)利用水熱法合成新型架構之錳氧化物。 奈米粒子發展至今其特殊物理及化學性質已經被應用在許多光、電、磁及化學催化應用上。此篇論文中,拓展金屬奈米粒子的應用性上,我們使用溶膠合成法,一個簡易的合成步驟,不需要修飾任何官能基,而在被包覆物的奈米粒子表面就能將金屬奈米粒子與中孔洞材料-MCM-41做進一步的結合,形成金屬-氧化矽奈米複合孔洞材料,藉由控制實驗環境來合成出球型的MCM-41,而金屬粒子則鑲嵌在孔道之中並且能夠穩定的存在於中孔洞MCM-41材料之中。在經過煅燒除去界面活性劑之後金屬粒子還是能夠穩定的存在於材料之內。在進一步的催化反應實驗中,孔洞材料能夠提供被催化物與催化粒子有足夠的空間來進行反應,而在經過多次催化反應後奈米粒子的活性與中孔洞架構仍然保持完整。除此之外,此奈米複合物質也不會因物質的尺寸過小,不便於分離產物與催化觸媒。 錳氧化物近來成為熱門的研究題材,主要原因是其特殊的物理特性: a)其氧化價數範圍廣,可從+2價到+7價; b) 晶型結構之多樣性,從非晶相組成到孔洞性晶型架構; c)外在型貌的多樣性,如常見的粒子狀、柱狀及線狀。除了上述的物理性質之外,錳氧化物也具有價格低廉、來源充足、低毒性及對環境污染性低等優點,對於應用在能源儲存裝置、電極材料、污染物的處理、磁性材料應用,及常見的化學催化應用上都是熱門的材料選項之一。但一般的錳氧化物的製程有不少的缺點,例如反應時間過長、反應步驟繁雜、晶型及形狀控制不易、合成成本過高、產量不大等缺點。在此篇論文中,我們使用水熱或溶劑熱合成法來加以避免上述等缺點,使用簡單、快速的製備流程,並且利用所選擇的界面活性劑當成板模來合成並控制生成各種型貌的錳氧化物,並且依據其物性及化性將其進一步應用在電容及催化應用。
There are two topics in this dissertation: (1) core-shell synthesis of a spherical, mesoporous silica/metal nanocomposite: metal/PVP@MCM-41 (metal=Pt, Ag), and (2) hydrothermal synthesis of manganese oxide with novel architectures. Nanoparticles can be used in many applications such as optics, electricity, magnetism and catalysis because of nanoparticles containing special physical and chemical properties. In this dissertation, we proposed a facile synthesized process in a single step to combine metal nanoparticles with porous material MCM-41 to produce Metal/PVP@ MCM-41 without modification to any organic ligand on the surface of nanoparticles to link the porous support by sol-gel method. The core-shell approach, whereby nanoparticles enclosed by protecting agents are grown in the channels of porous materials, is of considerable technological importance for improving the lifetime and reusability of catalysts. Herein, we describe the direct synthesis of spherical, mesoporous, nano-sized metal composites (Metal/PVP@MCM-41) via core-shell approach. This work also indicates that the high surface area of the metal nanoparticles can be maintained for long periods of time at the catalyst's operating temperature. Our work continues in the design of stable, nanoparticles and their use as reusable catalysts. Manganese oxides had been investigated as important transitional metal oxide material because of specific properties, diversity of crystal structure and various kinds of morphologies. The physical and chemical features can be adjusted by the oxidation state, crystalline, channel type and shape to design for specific applications. There are many synthetic methods for producing different kinds of manganese oxides. However, these methods such as sol-gel, redox precipitation, template replica, spray pyrolysis and electrochemical deposition have some disadvantages like, long reaction time, crystal structure and shape not controllable, complicated steps, expensive process and difficult to large-scale synthesis. We proposed a facile, fast and low cost producing process and combined with surfactant-based supramolecular templates to produce different shapes manganese oxides by hydro/solvothermal method. Thanks to the properties and architecture of manganese oxide we prepared, like wormhole-like giant cavities, exceptional thermal stability and intrinsic electrical conductivity, they should be expected to display better performance in the application of semiconductor catalysts and supports, energy storage, and electrochemical applications. This synthetic method can be further expanded to the preparation of other manganese oxide-based materials with various morphologies in order to meet diverse applications.
URI: http://hdl.handle.net/11455/16880
其他識別: U0005-1901201210552600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1901201210552600
顯示於類別:化學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。