Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16882
標題: 伊文氏桿菌所產生的低分子量細菌素與其分泌機制之探討
Studies of Functional Characterization and Secretion Mechanism of Low-Molecule-Weight bacteriocin from Pectobacterium carotovorum subsp. carotovorum
作者: 詹永傑
Chuang, Duen-yau
關鍵字: Pectobacterium carotovorum subsp. carotovorum
伊文氏桿菌
bacteriocin
secretion
細菌素
鞭毛分泌系統
出版社: 化學系所
引用: Pe'rombelon MCM: Potato diseases caused by soft-rot erwinias: an overview of pathogenesis. The role of pectic enzymes in plant pathogenesis. Plant Pathol. 2002, 51:1-12. Hauben L, Moore ER, Vauterin L, Steenackers M, Mergaert J, Verdonck L, Swings J: Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol. 1998, 21:384-397. Collmer A, Keen NT: The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol. 1986, 24:383-409. Pirhonen M, Flego D, Heikinheimo R, Palva ET: A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 1993, 12:2467-2476. Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJ, Golby P, Reeves PJ, Stephens S: The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 1993, 12:2477-2482. Eckert JW, Ogawa JM: The Chemical Control of Postharvest Diseases: Deciduous Fruits, Berries, Vegetables and Root/Tuber Crops. Annu Rev Phytopathol. 1988, 26:433-469. Kikumoto T, Kyeremeh AG, Chuang DY, Gunji Y, Takahara Y, Ehara Y: Biological Control of Soft Rot of Chinese Cabbage Using Single and Mixed Treatments of Bacteriocin-producing Avirulent Mutants of Erwinia carotovora subsp. carotovora. J Gen Plant Pathol. 2000, 66:264-268. Riley MA: Molecular mechanisms of bacteriocin evolution. Annu Rev Genet. 1998, 32:255-278. Daw MA, Falkiner FR: Bacteriocins: Nature, Function and Structure. Micron. 1996, 27:467-479. Gratia A: sur un remarquable example d'antagonisme entre deux souches de colibacille. C R Soc Biol. 1925, 93:1040-1041. Jeziorowski A, Gordon DM: Evolution of microcin V and colicin Ia plasmids in Escherichia coli. J Bacteriol. 2007, 189:7045-7052. Jack RW, Tagg JR, Ray B: Bacteriocins of Gram-Positive Bacteria. Microbiol Rev. 1995, 59:171-200. Reeves P: The bacteriocins. Bacteriol Rev. 1965, 29:24-45. Minamikawa M, Kawai Y, Inoue N, Yamazaki K: Purification and characterization of Warnericin RB4, anti-Alicyclobacillus bacteriocin, produced by Staphylococcus warneri RB4. Curr Microbiol. 2005, 51:22-26. Martinevskiĭ IL, Vishniakov AK: Bacteriocinogeny in Yersinia enterocolitica. Antibiotiki. 1975, 20:128-132. Rakin A, Boolgakowa E, Heesemann J: Structural and functional organization of the Yersinia pestis bacteriocin pesticin gene cluster. Microbiology. 1996, 142:3415-3424. Bradley DE: Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967, 31:230-314. Nguyen AH, Tomita T, Hirota M, Sato T, Kamio Y: A simple purification method and morphology and component analyses for carotovoricin Er, a phage-tail-like bacteriocin from the plant pathogen Erwinia carotovora Er. Biosci Biotechnol Biochem. 1999, 63:1360-1369. Nguyen HA, Tomita T, Hirota M, Kaneko J, Hayashi T, Kamio Y: DNA inversion in the tail fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovora Er. J Bacteriol. 2001, 183:6274-6281. Riley MA, Wertz JE: Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 2002, 84:357-364. Riley MA, Wertz JE: Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002, 56:117-137. Walker D, Mosbahi K, Vankemmelbeke M, James R, Kleanthous C: The role of electrostatics in colicin nuclease domain translocation into bacterial cells. J Biol Chem. 2007, 282:31389-31397. Jakes KS, Zinder ND: Highly purified colicin E3 contains immunity protein. Proc Natl Acad Sci U S A. 1974, 71:3380-3384. Jakes K, Zinder ND, Boon T: Purification and properties of colicin E3 immunity protein. J Biol Chem. 1974, 249:438-444. Vankemmelbeke M, Zhang Y, Moore GR, Kleanthous C, Penfold CN, James R: Energy-dependent immunity protein release during tol-dependent nuclease colicin translocation. J Biol Chem. 2009, 284:18932-18941. Ebina Y, Takahara Y, Shirabe K, Yamada M, Nakazawa T, Nakazawa A: Plasmid-encoded regulation of colicin E1 gene expression. J Bacteriol. 1983, 156:487-492. Waleh NS, Johnson PH: Structural and functional organization of the colicin E1 operon. Proc Natl Acad Sci U S A. 1985, 82:8389-8393. Spangler R, Zhang SP, Krueger J, Zubay G: Colicin synthesis and cell death. J Bacteriol. 1985, 163:167-173. Little JW, Mount DW: The SOS regulatory system of Escherichia coli. Cell. 1982, 29:11-22. Kamenšek S, Podlesek Z, Gillor O, Zgur-Bertok D: Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression. BMC Microbiol. 2010, 10:283. Osnat G, Jan ACV, Margaret AR. The role of SOS boxes in enteric bacteriocin regulation. Microbiology. 2008, 154:1783-1792. Matsui H, Sano Y, Ishihara H, Shinomiya T: Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J Bacteriol. 1993, 175:1257-1263. Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002, 84:499-510. Wu W, Jin S: PtrB of Pseudomonas aeruginosa suppresses the type III secretion system under the stress of DNA damage. J Bacteriol. 2005, 187:6058-6068. Sano Y, Matsui H, Kobayashi M, Kageyama M: Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J Bacteriol. 1993, 175:2907-2916. Parker MW, Pattus F, Tucker AD, Tsernoglou D: Structure of the membrane-pore-forming fragment of colicin A. Nature. 1989, 337:93-96. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloube`s R, Postle K, Riley M, Slatin S, Cavard D: Colicin Biology. Microbiol Mol Biol Rev. 2007, 71:158-229. James R, Kleanthous C, Moore GR: The biology of E colicins: paradigms and paradoxes. Microbiology. 1996, 142:1569-1580. Lazdunski CJ, Bouveret E, Rigal A, Journet L, Lloubès R, Bénédetti H: Colicin import into Escherichia coli cells. J Bacteriol. 1998, 180:4993-5002. Zakharov SD, Cramer WA: Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta. 2002, 1565:333-346. Davies JK, Reeves P: Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol. 1975, 123:102-117. Davies JK, Reeves P: Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. J Bacteriol. 1975, 123:96-101. Braun V, Herrmann C: Evolutionary relationship of uptake systems for biopolymers in Escherichia coli: cross-complementation between the TonB-ExbB-ExbD and the TolA-TolQ-TolR proteins. Mol Microbiol. 1993, 8:261-268. Zhang Y, Li C, Vankemmelbeke MN, Bardelang P, Paoli M, Penfold CN, James R. The crystal structure of the TolB box of colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. Mol Microbiol. 2010, 75:623-636. Barnéoud-Arnoulet A, Gavioli M, Lloubès R, Cascales E: Interaction of the colicin K bactericidal toxin with components of its import machinery in the periplasm of Escherichia coli. J Bacteriol. 2010, 192:5934-5942. Tuckman M, Osburne MS: In vivo inhibition of TonB-dependent processes by a TonB box consensus pentapeptide. J Bacteriol. 1992. 174:320-323. Bruske AK, Heller KJ: Molecular characterization of the Enterobacter aerogenes tonB gene: identification of a novel type of tonB box suppressor mutant. J Bacteriol. 1993, 175:6158-6168. Mora L, Klepsch M, Buckingham RH, Heurgué-Hamard V, Kervestin S, de Zamaroczy M: Dual roles of the central domain of colicin D tRNase in TonB-mediated import and in immunity. J Biol Chem. 2008, 283:4993-5003. Härle C, Kim I, Angerer A, Braun V: Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. EMBO J. 1995, 14:1430-1438. Heller KJ, Kadner RJ, Günther K: Suppression of the btuB451 mutation by mutations in the tonB gene suggests a direct interaction between TonB and TonB-dependent receptor proteins in the outer membrane of Escherichia coli. Gene. 1988, 64:147-153. Goemaere EL, Devert A, Lloubès R, Cascales E: Movements of the TolR C-terminal domain depend on TolQR ionizable key residues and regulate activity of the Tol complex. J Biol Chem. 2007, 282:17749-17757. James R, Penfold CN, Moore GR, Kleanthous C: Killing of E coli cells by E group nuclease colicins. Biochimie. 2002, 84:381-389. Benedetti H, Lazdunski C, Lloubès R: Protein import into Escherichia coli: colicins A and E1 interact with a component of their translocation system. EMBO J. 1991, 10:1989-1995. Duché D, Baty D, Chartier M, Letellier L: Unfolding of colicin A during its translocation through the Escherichia coli envelope as demonstrated by disulfide bond engineering. J Biol Chem. 1994, 269:24820-24825. Jeanteur D, Schirmer T, Fourel D, Simonet V, Rummel G, Widmer C, Rosenbusch JP, Pattus F, Pagès JM: Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli. Proc Natl Acad Sci U S A. 1994, 91:10675-10679. Bénédetti H, Lloubès R, Lazdunski C, Letellier L: Colicin A unfolds during its translocation in Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J. 1992, 11:441-447. Soelaiman S, Jakes K, Wu N, Li C, Shoham M: Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol Cell. 2001, 8:1053-1062. Zakharov SD, Eroukova VY, Rokitskaya TI, Zhalnina MV, Sharma O, Loll PJ, Zgurskaya HI, Antonenko YN, Cramer WA: Colicin occlusion of OmpF and TolC channels: outer membrane translocons for colicin import. Biophys J. 2004, 87:3901-3911. Fredericq P: Colicins. Annu Rev Microbiol. 1957, 11:7-22. Lancaster LE, Savelsbergh A, Kleanthous C, Wintermeyer W, Rodnina MV: Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes. Mol Microbiol. 2008, 69:390-401. Meyhack B, Meyhack I, Apirion D: Colicin E3: a unique endoribonuclease. Proc Natl Acad Sci U S A. 1973, 70:156-160. Boon T: Inactivation of Ribosomes In Vitro by Colicin E3. Proc Natl Acad Sci U S A. 1971, 68:2421-2425. de Zamaroczy M, Mora L, Lecuyer A, Géli V, Buckingham RH: Cleavage of Colicin D Is Necessary for Cell Killing and Requires the Inner Membrane Peptidase LepB. Mol Cell. 2001, 8:159-168. Mora L, Diaz N, Buckingham RH, de Zamaroczy M: Import of the transfer RNase colicin D requires site-specific interaction with the energy-transducing protein TonB. J Bacteriol. 2005, 187:2693-2697. Ogawa T, Tomita K, Ueda T, Watanabe K, Uozumi T, Masaki H: A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science. 1999, 283:2097-2100. Tomita K, Ogawa T, Ueda T , Watanabe K, Masaki H: A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci U S A. 2000, 97:8278-8283. Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA: Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella. J Mol Evol. 2005, 60:546-556. Michel-Briand Y, Baysse C: The pyocins of Pseudomonas aeruginosa. Biochimie. 2002, 84:499-510. Higerd TB, Baechler CA, Berk RS: In vitro and in vivo characterization of pyocin. J Bacteriol. 1967, 93:1976-1986. Kuroda K, Kagiyama R: Biochemical relationship among three F-type pyocins, pyocin F1, F2, and F3, and phage KF1. J Biochem. 1983, 94:1429-14241. Parret A, De Mot R: Novel bacteriocins with predicted tRNase and pore-forming activities in Pseudomonas aeruginosa PAO1. Mol Microbiol. 2000, 35:472-473. Sano Y: The inherent DNase of pyocin AP41 causes breakdown of chromosomal DNA. J Bacteriol. 1993, 175:912-915. Duport C, Baysse C, Michel-Briand Y: Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. J Biol Chem. 1995, 270:8920-8927. Kageyama M, Kobayashi M, Sano Y, Masaki H: Construction and characterization of pyocin-colicin chimeric proteins. J Bacteriol. 1996, 178:103-110. van der Wal FJ, Luirink J, Oudega B: Bacteriocin release proteins: mode of action, structure, and biotechnological application. FEMS Microbiol Rev. 1995, 17:381-399. Jakes KS, Zinder ND: Plasmid ColE3 specifies a lysis protein. J Bacteriol. 1984, 157:582-590. Oudega B, Stegehuis F, van Tiel-Menkveld GJ, de Graaf FK: Protein H encoded by plasmid CloDF13 is involved in excretion of cloacin DF13. J Bacteriol. 1982, 150:1115-1121. Sabik JF, Suit JL, Luria SE: cea-kil operon of the ColE1 plasmid. J Bacteriol. 1983, 153:1479-1485. Luirink J, Hayashi S, Wu HC, Kater MM, de Graaf FK, Oudega B: Effect of a mutation preventing lipid modification on localization of the pCloDF13-encoded bacteriocin release protein and on release of cloacin DF13. J Bacteriol. 1988, 170:4153-4160. Zhong X, Tai PC: When an ATPase is not an ATPase: at low temperatures the C-terminal domain of the ABC transporter CvaB is a GTPase. J Bacteriol. 1998, 180:1347-1353. Guo X, Harrison RW, Tai PC: Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion. J Bacteriol. 2006, 188:2383-2391. Guo X, Chen X, Weber IT, Harrison RW, Tai PC: Molecular basis for differential nucleotide binding of the nucleotide-binding domain of ABC-transporter CvaB. Biochemistry. 2006, 45:14473-14480. Mark J Pallen, Roy R Chauduri, and Ian R Henderson: Genomic analysis of secretion systems. Curr Opin Cell Biol. 2003, 6:519-527. Dilks K, Rose RW, Hartmann E, Pohlschröder M: Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol. 2003, 185:1478-1483. Rusch SL, Kendall DA: Interactions that drive Sec-dependent bacterial protein transport. Biochemistry. 2007, 46:9665-9673. Thanassi DG, Hultgren SJ: Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol. 2000, 12:420-430. Tokuda H: Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem. 2009, 73:465-473. Binet R, Létoffé S, Ghigo JM, Delepelaire P, Wandersman C: Protein secretion by Gram-negative bacterial ABC exporters-a review. Gene. 1997, 192:7-11. Létoffé S, Delepelaire P, Wandersman C: Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin. EMBO J. 1990, 9:1375-1382. Cianciotto NP: Type II secretion: a protein secretion system for all seasons. Trends Microbiol. 2005, 13:581-588. Poquet I, Faucher D, Pugsley AP: Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. EMBO J. 1993, 12:271-278. Alvarez-Martinez CE, Christie PJ: Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev. 2009, 73:775-808. Lührmann A, Nogueira CV, Carey KL, Roy CR: Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A. 2010, 107:18997-19001. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala''Aldeen D: Type V Protein Secretion Pathway: the Autotransporter Story. Microbiol Mol Biol Rev. 2004, 68:692-744. Hueck CJ: Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants. Microbiol. 1998, Mol. Biol. Rev. 62:379-433. Charkowski AO, Huang HC, Collmer A: Altered localizationof HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests thatdifferent components of the type III secretion pathway control protein translocation across the inner and outer membranes of gram-negative bacteria. J. Bacteriol. 1997, 179:3866-3874. Macnab RM: The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol. 1999, 181:7149-7153. Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M, Magnusson KE, Wolf-Watz H: Modulation of virulence factor expression by pathogen target cell contact. Science. 1996, 273:1231-1233. Colin Dale, Tait Jones, and Mauricio Pontes: Degenerative Evolution and Functional Diversification of Type-III Secretion Systems in the Insect Endosymbiont Sodalis glossinidius. Mol Biol Evol. 2005, 22:758-766. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galán JE, Aizawa SI: Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science. 1998, 280:602-605. Groisman EA, Ochman H: Pathogenicity Islands: Bacterial Evolution in Quantum Leaps. Cell. 1996, 87:791-794. Galán J, Collmer A: Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 1999, 284:1322-1328. Anderson DM, Schneewind O: A mRNA Signal for the Type III Secretion of Yop Proteins by Yersinia enterocolitica. Science. 1997, 278:1140-1143. Blaylock B, Sorg JA, Schneewind O: Yersinia enterocolitica type III secretion of YopR requires a structure in its mRNA. Mol Microbiol. 2008, 70:1210-1222. Erhardt M, Namba K, Hughes KT. Bacterial Nanomachines: The Flagellum and Type III Injectisome. Cold Spring Harb Perspect Biol. 2010, 2:a000299. Schmitt R: Helix rotation model of the flagellar rotary motor. Biophys J. 2003, 85:843-852. Aldridge P, Hughes KT: Regulation of flagellar assembly. Curr Opin Microbiol. 2002, 5:160-165. Macnab RM: The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol. 1999, 181:7149-7153. Blocker A, Komoriya K, Aizawa S: Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U S A. 2003, 100:3027-3030. Macnab RM: Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta. 2004, 1694:207-217. Minamino T,Macnab RM: Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol. 1999, 181:1388-1394. Minamino, T., and R. M. Macnab: Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate-specificity switching. J Bacteriol. 2000, 182:4906-4914. Ferris HU, Furukawa Y, Minamino T, Kroetz MB, Kihara M, Namba K, Macnab RM: FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem. 2005, 280:41236-41242. Bange G, Kümmerer N, Engel C, Bozkurt G, Wild K, Sinning I: FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proc Natl Acad Sci U S A. 2010, 107:11295-11300. Liu X and Matsumura P: The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol. 1994, 176:7345-7351. Cui Y, Chatterjee A, Yang H, Chatterjee AK: Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J Bacteriol. 2008, 190:4610-23. Chatterjee A, Cui Y, Chatterjee AK: RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. J Bacteriol. 2009, 191:4582-4593. Yap MN, Yang CH, Barak JD, Jahn CE, Charkowski AO: The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. J Bacteriol. 2005, 187:639-648. Sano Y, Kobayashi M, Kageyama M: Functional domains of S-type pyocins deduced from chimeric molecules. J Bacteriol 1993, 175:6179-6185. Liu YG, Whittier RF: Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995, 25:674-681. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983, 166:557-580. Sambrook J., Fritsch E.F., Maniatis T: Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1989. Malys N, McCarthy JE: Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci. 2011, 68:991-1003. Kapanidis AN, Margeat E, Laurence TA, Doose S, Ho SO, Mukhopadhyay J, Kortkhonjia E, Mekler V, Ebright RH, Weiss S: Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis. Mol Cell. 2005, 20:347-356. John WL, Susan HE, Laura ZP, Davis WM. Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci U S A. 1980, 77:3225-3229. Sandeep K, Sergei M, Kim S. UV-induced Mutagenesis in Escherichia coli SOS Response: A Quantitative Modle. PLoS Comput Biol. 2007, 3:0451-0462. Balsalobre C, Johansson J, Uhlin BE. Cyclic AMP-Dependent Osmoregulation of crp Gene Expression in Escherichia coli. J Bacteriol. 2006, 188:5935-5944. Kimata K, Takahashi H, Inada T, Postma P, Aiba H. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc Natl Acad Sci U S A. 1997, 94:12914-12919. Deutscher J: The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008, 11:87-93. Chiu J, March PE, Lee R, Tillett D: Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 2004, 32:e174 Bruce AG, Uhlenbeck OC: Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res. 1978, 5:3665-3677. Silberklang M, Gillum A.M, RajBhandary UL: The use of nuclease P1 in sequence analysis of end group labeled RNA. Nucleic Acids Res. 1977, 4:4091-4108. Chuang DY, Chien YC, Wu HP: Cloning and Expression of the Erwinia carotovora subsp. carotovora Gene Encoding the Low-Molecular-Weight Bacteriocin Carocin S1. J Bacteriol. 2007, 189:620-626. Pribnow D: Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci U S A. 1975, 72:784-788. Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL: A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 262:1407-1413. Sharma O, Cramer WA: Minimum length requirement of the flexible N-terminal translocation subdomain of colicin E3. J Bacteriol. 2007, 189:363-368. Roh E, Park TH, Kim MI, Lee S, Ryu S, Oh CS, Rhee S, Kim DH, Park BS, Heu S: Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl Environ Microbiol. 2010, 76:7541-7549. Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA: Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella. J Mol Evol. 2005, 60:546-556. de Zamaroczy M, Buckingham RH: Importation of nuclease colicins into E coli cells: endoproteolytic cleavage and its prevention by the immunity protein. Biochimie. 2002, 84:423-432. Bartlett DH, Frantz BB, Matsumura P: Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5'' consensus sequences of operons under FlbB and FlaI control. J Bacteriol. 1988, 170:1575-81. Kutsukake K, Ohya Y, Iino T: Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol. 1990, 172:741-747. Wang S, Fleming RT, Westbrook EM, Matsumura P, McKay DB: Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol. 2006, 355:798-808. Gober JW, Boyd CH, Jarvis M, Mangan EK, Rizzo MF, Wingrove JA: Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division. J Bacteriol. 1995, 177:3656-3667. Eberl L, Christiansen G, Molin S, Givskov M: Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. J Bacteriol. 1996, 178:554-559. Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E, McAdams HH, Shapiro L: Assembly of the Caulobacter cell division machine. Mol Microbiol. 2011, 80:1680-1698. McMurry JL, Van Arnam JS, Kihara M, Macnab RM: Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery. J Bacteriol. 2004, 186:7586-7592. Auvray F, Thomas J, Fraser GM, Hughes C: Flagellin polymerisation control by a cytosolic export chaperone. J Mol Biol. 2001, 30:221-229. Aldridge P, Gnerer J, Karlinsey JE, Hughes KT: Transcriptional and translational control of the Salmonella fliC gene. J Bacteriol. 2006, 188:4487-4496. Yonekura K, Maki-Yonekura S, Namba K: Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature. 2003, 424:643-650. Jakes K, Zinder ND, Boon T: Purification and properties of colicin E3 immunity protein. J Biol Chem. 1974, 249:438-444. Parret A, De Mot R: Novel bacteriocins with predicted tRNase and pore-forming activities in Pseudomonas aeruginosa PAO1. Mol Microbiol. 2000, 35:472-473. Zarivach R, Ben-Zeev E, Wu N, Auerbach T, Bashan A, Jakes K, Dickman K, Kosmidis A, Schluenzen F, Yonath A, Eisenstein M, Shoham M: On the interaction of colicin E3 with the ribosome. Biochimie. 2002, 84:447-454. Hardy KG, Meynell GG: Induction of colicin factor E2-P9 by Mitomycin C. J Bacteriol. 1972, 112:1007-1009. Connor DA, Falick AM, Shetlar MD: UV light-induced cross-linking of nucleosides, nucleotides and a dinucleotide to the carboxy-terminal heptad repeat peptide of RNA polymerase II as studied by mass spectrometry. Photochem Photobiol. 1998, 68:1-8. Ebina Y, Kishi F, Nakazawa A: Direct participation of lexA protein in repression of colicin E1 synthesis. J Bacteriol. 1982, 150:1479-1481. Butala M, Zgur-Bertok D, Busby SJ: The bacterial LexA transcriptional repressor. Cell Mol Life Sci. 2009, 66:82-93. Calsou P, Salles B: Regulation of the SOS response analyzed by RecA protein amplification. J Bacteriol. 1985, 162:1162-1165. Cox MM: Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol. 2007, 42:41-63. Ebina Y, Takahara Y, Kishi F, Nakazawa A, Brent R: LexA protein is a repressor of the colicin E1 gene. J Biol Chem. 1983, 258:13258-13261. Hands SL, Holland LE, Vankemmelbeke M, Fraser L, Macdonald CJ, Moore GR, James R, Penfold CN: Interactions of TolB with the translocation domain of colicin E9 require an extended TolB box. J Bacteriol. 2005, 187:6733-6741. Sharma O, Yamashita E, Zhalnina MV, Zakharov SD, Datsenko KA, Wanner BL, Cramer WA: Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon. J Biol Chem. 2007, 282:23163-23170. Hirao I, Harada Y, Nojima T, Osawa Y, Masaki H, Yokoyama S: In vitro selection of RNA aptamers that bind to colicin E3 and structurally resemble the decoding site of 16S ribosomal RNA. Biochemistry. 2004, 43:3214-3221. Ohno S, Imahori K: Colicin E3 is an endonuclease. J Biochem. 1978, 84:1637-1640. Senior BW, Holland IB: Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc Natl Acad Sci U S A. 1971, 68:959-963. Zhang LH, Fath MJ, Mahanty HK, Tai PC, Kolter R: Genetic analysis of the colicin V secretion pathway. Genetics. 1995, 141:25-32. Cavard D: Assembly of colicin A in the outer membrane of producing Escherichia coli cells requires both phospholipase A and one porin, but phospholipase A is sufficient for secretion. J Bacteriol. 2002, 184:3723-3733.
摘要: Pectobacterium carotovorum subsp. carotovorum 是一株屬於腸道菌科的革蘭氏陰性菌,舊稱為伊文氏桿菌 (Erwinia)。這種革蘭氏陰性菌偏好寄生於植物,它經常造成經濟作物損傷。被此細菌寄生的植物在高溫潮溼的環境下會產生根部腐爛的疾病,所以這種有名的植物致病菌一直以來是許多科學家致力研究重點之一。現行針對此種植物致病菌經常會採用以化學物質為主成分的抗菌藥劑進行防疫,但這些化學試劑並不是一種很有效的方法,原因是化學試劑的影響是全面的並沒有針對性。這些結果可能會影響到植栽區域的正常生態鏈,以及無法避免的環境污染。 無論是革蘭氏陽性或者是革蘭氏陰性菌都會分泌許多胞外蛋白質性物質,其中一種胞外蛋白質稱為細菌素。細菌素是一種由蛋白質組成的抗菌性毒性物質。此類毒性物質被生產者利用來抑制其他菌株的生存。然而這種蛋白質性的毒性物對於其所抑制菌株的種類是相當有限且有其特異性。換句話說此類具有攻擊特異性的蛋白質性物質或許是一種可以利用來有效防疫 Pectobacterium 所造成的損失。同時蛋白質性物質不易造成環境污染,故或許可以利用細菌素來做為一種不錯的生物性抗菌試劑。目前已經有許多文獻探討過這種蛋白質性物質,例如大腸桿菌所產生的大腸桿菌素以及綠膿桿菌所產生的綠膿桿菌素都是相當著名的細菌素。本篇論文即介紹我們在伊文氏桿菌也成功得選殖出低蛋白分子量的細菌素基因,並且將此類低分子量細菌素命名為 Carocin。同時我們也發現主司 Carocin 分泌機制的分泌系統為革蘭氏陰性菌上常見的第三類型分泌系統。雖然許多革蘭氏陰性菌皆保有此種分泌系統,但是過去卻沒有相關文獻證實過第三類分泌系統會參與細菌素的分泌。 本篇論文利用細菌的接合生殖將帶有抗藥性基因的 DNA 分子送入待研究的細菌素生產者細胞內進行非特定的基因阻斷。在此處我們選用本身帶有的轉位子 Tn5 的菌株 E. coli 1830 來當做接合生殖實驗的提供者,而待研究的伊文氏桿菌則為轉位子的接收者,期望能得到帶有細菌素相關基因被轉位子阻斷的突變株。另外對於特定基因的阻斷,則是利用同質互換的實驗方法來得到特定基因阻斷的突變株。這些被阻斷的基因則是用不對稱交聯聚合酵素鏈鎖反應 (Thermal asymmetric interlaced PCR) 解析其 DNA 序列。並且同時利用南方點墨法來驗證其結果,而南方點墨法亦利用於製備 Genomic DNA library,幫助我們可以得到直接由染色體上截取特定區域的 DNA 分子。北方點墨法與 RNA 逆轉錄實驗則是用來觀察實驗中突變株細胞內的基因轉錄情形。 藉由轉位子 Tn5 阻斷基因的實驗方法,我們找到並且已經發表了兩個由伊文氏桿菌所生產的低分子量細菌素。 Carocin S1 為第一個發表的低分子量細菌素,它是一種由 Pcc 菌株 H-rif-8-6 所產生,可將 DNA 水解的核酸水解型細菌素。另外一個由 F-rif-18 產生的細菌素則命名為 Carocin S2。 經由核酸水解實驗, Carocin S2 被證實為一種可以水解 RNA 分子的細菌素,但令我們感興趣的是此種細菌素不但可以水解相對分子量最大的核糖體 RNA 也可水解其它小分量的 RNA。我們推測不論是 Carocin S1,亦或是 Carocin S2 在感染其他細菌細胞後,皆會攻擊它們所辨識的 DNA 或 RNA 分子,並進行水解破壞,使基因表現不正常,進而導致細菌細胞凋亡。而同時生產者本身亦會表現免疫蛋白來保護自己免於被自己生產的細菌素 Carocin 所傷害。另外,我們也發現伊文氏桿菌是藉由第三類分泌系統的鞭毛型構造,將毒性蛋白 Carocin 運輸至胞外,進而攻擊其它細菌細胞。 本篇論文將闡述我們實驗室發現了兩個由 Pectobacterium 產生的核酸水解型的低分子量細菌素 (Carocin S1 與 Carocin S2),此種細菌素經常需要 UV 照射誘導使其表現。另外我們也證實此類細菌素是由鞭毛型第三類型分泌系統來輔助其分泌。
Pectobacterium carotovorum subsp. carotovorum is a Gram-negative, phytoparasitic enterobacterium. It is also a well-known phytopathogen causing soft-rot disease of many economic crops. Chemical bactericidal is a current agent used against the disease but unavoidably causes the environmental contamination. Bacteriocins are endogenous, antimicrobial and toxic proteins, which are usually produced by Gram-positive and Gram-negative bacteria. However, the proteinaceous toxins have narrow spectrum to inhibit growth of the related bacteria; that is, bacteriocins would be a eco-friendly and efficient choice to prevent pathogen that causes the economic damage. While bacteriocins have been extensively investigated in many Gram-negative bacteria such as pyocin of Pseudomonas and colicin of Escherichia coli, they have been relatively unexplored in Pectobacterium species. The dissertation described that the Pcc strain also produces bacteriocin, designated as Carocin. Furthermore, we showed the secretion dependency of Carocin from Pcc strain used the type III secretion system, whereas little is shown about the relationship between them. In this study, the bacterial conjugation and the homologous replacement method were performed to translocate a linear construct harboring the antibiotic-resistance gene into the carocin-producing cell, resulting in the carocin-related null alleles. E. coli 1830 strain harboring transposon Tn5 was used as donors while the recipients were Pcc strains. In contrast to the conjugation, the homologous replacement method was used to knock out the specific target gene in genomic DNA. By using the thermal asymmetric interlaced PCR, the interrupted DNA sequence of the carocin-related null allele was determined. The southern blotting was used to confirm the result of mutation, moreover, the method would be used to prepare the genomic DNA library from which the native carocin-contained DNA was obtained. Additionally, transcriptional analysis was carried out by the Northern blotting and the reverse transcription PCR. These methods provide more information concerning with the carocins. Consequently, it was found that the Carocin S1 was produced from a Pcc strain H-rif-8-6. Carocin S1 has nucleotidase activity against DNA molecule. This is the first bacteriocin determining from Pectobacterium. Subsequently, Carocin S2 was characterized from Pcc strain F-rif-18, which was a RNase type bacteriocin. In the in vitro RNA degradation assay, Carocin S2 would hydrolyze not only the large molecule of ribosomal RNA but small RNA molecules. We suggested that both Carocin S1 and Carocin S2 kill those susceptive cells by exhausting their supply of DNA or RNA respectively, and then leading to inactivation of physiological biosynthesis. The two producers also have expression of the cognate immunity proteins which protect themselves from the specific damage of their toxic Carocins. Eventually, we established that Carocin protein might be secreted though the flagella that belongs type III secretion system. This secretion mechanism was different from those of previous reports of other bacteriocins. Here we showed the first two low-molecule-weight bacteriocins, Carocin S1 and Carocin S2, which are produced by Pectobacterium after UV irradiation. Furthermore, we found that the Carocin secretion is dependent on the type III secretion system integral to the bacterial flagellum, which this finding is irrelevant to the previous studies of bacteriocin secretion.
URI: http://hdl.handle.net/11455/16882
其他識別: U0005-1908201111533100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201111533100
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.