請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/16903
標題: Development of novel catalysts for fuel cell applications
新型催化材料於燃料電池之研究
作者: 楊庭豪
Yang, Ting-Hao
關鍵字: Fuel cell
燃料電池
Oxygen-reduction reaction
Nafion/PbMnOx
lead-ruthenium oxide pyrochlore
enzyme direct electron transfer
氧氣還原反應
全氟磺酸聚合物/鉛錳氧化物
鉛釕黃綠石
酵素直接電子傳遞
出版社: 化學系所
引用: Chapter 1 1. Bard, A. J., Inzelt, G., and Scholz, F. (2008). Electrochemistry Dictionary. Heidelberger, Berlin, Germany: Springer-Verlag GmbH. 2. Breakthrough technologies institute (2010). 2010 Fuel cell market report. Washington, District, U.S.A: U.S. Department of Energy, Energy efficiency and renewable energy (EERE) information center. 3. Buchmann, I. (2008). Will secondary batteries replace primaries? 2011/05/23 Retrieved from the Website of Battery University, http://batteryuniversity.com/learn/article/will_secondary_batteries_replace_primaries 4. Buchmann, I. (2011). Battery statistics. 2011/06/01 Retrieved from the Website of Battery University, http://batteryuniversity.com/learn/article/battery_statistics 5. Bureau of energy (2010). 經濟部能源局燃料電池示範運轉驗證補助作業要點. 2011/06/07 Retrieved from the Website of R.O.C. Executive Yuan, Ministry of economic affairs, Bureau of energy, http://www.moeaboe.gov.tw/opengovinfo/Laws/secondaryenergy/LSecondaryMain.aspx?PageId=l_secondary_12 6. Cai, X., Kalcher, K., Neuhold, C., and Ogorevc, B. (1994). An improved voltammetric method for the determination of trace amounts of uric acid with electrochemically pretreated carbon paste electrodes. Talanta, 41(3), 407–413. 7. Chen, L. Y., and Kao, H. R. (陳陵援、高惠蓉) (2004). 能與能源. Science development, 373, 76–81. 8. Chen, J. C., Kumar, A. S., Chung, H. H., Chien, S. H., Kuo, M. C., and Zen, J. M. (2006). An enzymeless electrochemical sensor for the selective determination of creatinine in human urine. Sensors and Actuators B: Chemical, 115(1), 473–480. 9. Chiu, M. H., Wei, W. C., and Zen, J. M. (2011). The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru(bpy)32+. Electrochemistry Communications, 13(6), 605–6007. 10. Chiu, M. H., Yang, H. H., Liu, C. H., and Zen, J. M. (2009). Determination of lincomycin in urine and some foodstuffs by flow injection analysis coupled with liquid chromatography and electrochemical detection with a preanodized screen-printed carbon electrode. Journal of Chromatography B, 877(10), 991–994. 11. ExxonMobil (2010). The outlook for energy: A view to 2030. Irving, Texas, U.S.A: ExxonMobil. 12. Food and Agriculture Organization (2010). Environmental Indicators, Forests. 2011/05/25 Retrieved from the Website of the United Nations, Food and Agriculture Organization, http://unstats.un.org/unsd/environment/excel_file_tables/2010/ForestArea_2010.xls 13. Hsu, C. T., Chung, H. H., Lyuu, H. J., Tsai, D. M., Kumar, A. S., and Zen, J. M. (2006). An electrochemical cell coupled with disposable screen-printed electrodes for use in flow injection analysis. Analytical Sciences, 22(1), 35–38. 14. Johnson, C. (2010). Physics in an Automotive Engine. 2011/05/25 Retrieved from the Website of Mb-soft.com, http://mb-soft.com/public2/engine.html 15. Juliano C. M. (2010). FuelCell, S. Korean company to develop smaller power plants. 2011/06/07 Retrieved from the Website of StamfordAdvocate.com, http://www.stamfordadvocate.com/business/article/FuelCell-S-Korean-company-to-develop-smaller-852255.php 16. Keithley, J. F. (1999). Daniell Cell (pp. 49–51). San Francisco, California, USA: John Wiley and Sons. 17. Prasad, K. S., Chen, J. C., Ay, C., and Zen, J. M. (2007). Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor. Sensors and Actuators B: Chemical, 123(2), 715–719. 18. Sutton, G. P. and Biblarz, O. (2001). Rocket propulsion elements (7th ed.) (pp. 37–38). San Francisco, California, USA: John Wiley & Sons. 19. U.S. Census Bureau. (2011a). International Data Base. 2011/05/25 Retrieved from the Website of U.S. Census Bureau, http://www.census.gov/ipc/www/idb/worldpoptotal.php 20. U.S. Census Bureau. (2011b). Population Division. 2011/05/25 Retrieved from the Website of U.S. Census Bureau, http://www.census.gov/ipc/www/popclockworld.html 21. U.S. Energy Information Administration (n.d.) International Energy Statistics. 2011/05/25 Retrieved from the Website of U.S. Energy Information Administration http://tonto.eia.doe.gov/cfapps/ipdbproject/iedindex3.cfm?tid=2&pid=2&aid=2&cid=AS,CA,CH,FR,GM,IN,JA,RS,UK,US,ww,&syid=2004&eyid=2008&unit=BKWH 22. Weart, S. R. (2009). The Discovery of Global Warming. 2011/05/25 Retrieved from the Website of the Center for History of Physics of the American Institute of Physics, http://www.aip.org/history/climate/index.htm 23. Yano, H., Inukai, J., Uchida, H., Watanabe, M., Babu, P. K., Kobayashi, T., Chung, J. H., Oldfield, E., and Wieckowski, A. (2006). Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study. Physical Chemistry Chemical Physics, 8, 4932–4939. Chapter 2 24. Abdelrahman, A. I., Mohammad, A. M., Okajima, T., Ohsaka, T. (2006). Fabrication and electrochemical application of three-dimensional gold nanoparticles: Self-assembly. The Journal of Physical Chemistry B, 110(6), 2798–2803. 25. Appleby, A. J. (1993). Electrocatalysis of aqueous dioxygen reduction. Journal of Electroanalytical Chemistry, 357(1–2), 117–179. 26. Bai, Y. H., Du, Y., Xu, J. J., and Chen, H. Y. (2007). Choline biosensors based on a bi-electro- catalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochemistry Communications, 9(10), 2611–2616. 27. Brito, P. S. D., Sequeira, C. A. C. (1994). Cathodic oxygen reduction on noble metal and carbon electrodes. Journal of Power Sources, 52(1), 1–16. 28. Colmenares, L., Jusys, Z., and Behm, R. J. (2006). Electrochemical surface characterization and O2 reduction kinetics of Se surface-modified Ru nanoparticle-based RuSey/C catalysts. Langmuir, 22(25), 10437–10445. 29. El-Deab, M. S., Ohsaka, T. (2002). An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochemistry Communications, 4(4), 288–292. 30. Jusys, Z., Kaiser, J., and Behm, R. J. (2004). A novel dual thin-layer flow cell double-disk electrode design for kinetic studies on supported catalysts under controlled mass-transport conditions. Electrochimica Acta, 49(8), 1297–1305. 31. Liao, C. Y. (2008). The development of electroanalytical methods base on disposable ring-disk electrodes. Doctoral dissertation, National Chung Hsing University. Taichung, Taiwan. 32. Marković, N. M., Schmidt, T. J., Stamenković, V., and Ross, P. N. (2001). Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review. Fuel Cells, 1(2), 105–116. 33. Raj, C. R., Abdelrahman, A. I., and Ohsaka, T. (2005). Gold nanoparticle-assisted electro- reduction of oxygen. Electrochemistry Communications, 7(9), 888–893. 34. Rogulski, Z., Siwek, H., Paleska, I., and Czerwiński, A. (2003). Electrochemical behavior of manganese dioxide on a gold electrode. Journal of Electroanalytical Chemistry, 543(2), 175–185. 35. Schachl, K., Alemu, H., Kalcher, K., Ježkova, J., Švancera, I., and Vytřas, K. (1997). Flow injection determination of hydrogen peroxide using a carbon paste electrode modified with a manganese dioxide film. Analytical Letters, 30(15), 2655–2673. 36. Schachl, K., Alemu, H., Kalcher, K., Ježkova, J., Švancara, I., and Vytřas, K. (1997). Amperometric determination of hydrogen peroxide with a manganese dioxide-modified carbon paste electrode using flow injection analysis. Analyst, 122, 985–990. 37. Schachl, K., Alemu, H., Kalcher, K., Moderegger, H., Švancara, I., and Vytřas, K. (1998). Amperometric determination of hydrogen peroxide with a manganese dioxide film-modified screen printed carbon electrode. Fresenius'' Journal of Analytical Chemistry, 362(2), 194–200. 38. Sue, J. W., Ku, H. H., Chung, H. H., and Zen, J. M. (2008). Disposable screen- printed ring disk carbon electrode coupled with wall-jet electrogenerated iodine for flow injection analysis of arsenic(III). Electrochemistry Communications, 10(7), 987–990. 39. Taha, Z., and Wang, J. (1991). Electrocatalysis and flow detection at a glassy carbon electrode modified with a thin film of oxymanganese species. Electroanalysis, 3(3), 215–219. 40. Wakabayashi, N., Takeichi, M., Itagaki, M., Uchida, H., and Watanabe, M. (2005). Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. Journal of Electroanalytical Chemistry, 574(2), 339–346. 41. Yang, C. C., Kumar, A. S., Zen, J. M. (2006). Electrocatalytic reduction and determination of dissolved oxygen at a preanodized screen-printed carbon electrode modified with palladium nanoparticles. Electroanalysis, 18(1), 64–69. Chapter 3 42. Anson, F. C., Shi, C., and Steiger, B. (1997). Novel multinuclear catalysts for the electroreduction of dioxygen directly to water. Accounts of Chemical Research, 30(11), 437–444. 43. Bach, S., Baffier, N., Henry, M., and Livage, J.(1991). Sol-gel process for the preparation of manganese oxide. French patent 2,659,075. 44. Bender, S. F., Cretzmeyer, J. W., and Reise, T. F. (1994). Zinc/air cells. In: D. Linden (Ed.) Handbook of Batteries (2nd ed., Ch. 13.1). New York, New York, USA: McGraw-Hill. 45. Cao, Y. L., Yang, H. X., Ai, X. P., and Xiao, L. F. (2003). The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. Journal of Electroanalytical Chemistry, 557, 127–134. 46. Casado-Rivera, E., Volpe, D. J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A. C. D., DiSalvo, F. J., and Abruña, H. D. (2004). Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. Journal of the American Chemical Society, 126(12), 4043–4049. 47. Chartouni, D., Kuriyama, N. Kiyobayashi, T., and Chen, J. (2002). Air-metal hydride secondary battery with long cycle life. Journal of Alloys and Compounds, 330–332(17), 766–770. 48. Chen, J., and Cheng, F. Y. (2009). Combination of lightweight elements and nanostructured materials for batteries. Accounts of Chemical Research, 42(6), 713–723. 49. Cheng, F., Su, Y., Liang, J., Tao, Z., and Chen, J. (2010). MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chemistry of Materials, 22(3), 898 – 905. 50. Crompton, T. R. (2000). Batteries Reference Book (3rd ed.). Oxford, United Kingdom: Newnes. 51. Dewi, E. L., Oyaizu, K., Nishide, H., Tsuchida, E. (2004). Electrocatalysis for dioxygen reduction by a μ-oxo decavanadium complex in alkaline medium and its application to a cathode catalyst in air batteries. Journal of Power Sources, 130(1–2), 286–290. 52. El-Deab, M. S., and Ohsaka, T. (2003). Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes. Journal of Electroanalytical Chemistry, 553, 107–115. 53. El-Deab, M. S., and Ohsaka, T. (2006). Electrocatalytic reduction of oxygen at Au nanoparticles-manganese oxide nanoparticle binary catalysts. Journal of the Electrochemical Society, 153(7), A1365–A1371. 54. El-Deab, M. S., and Ohsaka, T. (2006). Manganese oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction. Angewandte Chemie International Edition, 45(36), 5963–5966. 55. Feng, Y., He, T., and Alonso-Vante, N. (2008). In situ free-surfactant synthesis and ORR- electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles. Chemistry of Materials, 20(1), 26–28. 56. Gong, K., Yu, P., Su, L., Xiong, S., and Mao, L. (2007). Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. The Journal of Physical Chemistry C, 111(5), 1882–1887. 57. Han, J. J., Li, N., and Zhang, T. Y. (2009). Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. Journal of Power Sources, 193(2), 885–889. 58. Hoge, W. H. (1988). Electrochemical cathode and materials therefor. US Patent 4,906,535. 59. Hu, F. P., Zhang, X. G., Xiao, F., and Zhang, J. L. (2005). Oxygen reduction on Ag–MnO2/SWNT and Ag–MnO2/AB electrodes. Carbon, 43(14), 2931–2936. 60. Kim, H, and Popov, B. N. (2003). Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. Journal of the Electrochemical Society, 150(3), D56–D62. 61. Kinoshita, K. (1992). Electrochemical Oxygen Technology, New York, New York, USA: John Wiley & Sons. 62. Konstantinov, K., Ng, S. H., Wang, J. Z., Wang, G. X., Wexler, D., and Liu, H. K. (2006). Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. Journal of Power Sources, 159(1), 241–244. 63. Lee, C. W., Sathiyanarayanan, K., Eom, S. W., Kim, H. S., and Yun, M. S. (2006). Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells. Journal of Power Sources, 160(1), 161–164. 64. Liao, C. Y. (2008). The development of electroanalytical methods base on disposable ring-disk electrodes. Doctoral dissertation, National Chung Hsing University. Taichung, Taiwan. 65. Lima, F. H. B., Calegaro, M. L., and Ticinelli, E. A. (2007). Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochimica Acta, 52(11), 3732–3738. 66. Liu, B., and Bard, A. J. (2002). Scanning electrochemical microscopy. 45. Study of the kinetics of oxygen reduction on platinum with potentialprogramming of the tip. The Journal of Physical Chemistry B, 106(49), 12801–12806. 67. Mao, L., Arihara, K., Sotomura, T., and Ohsaka, T. (2003). A novel electrochemical strategy for developing alkaline air electrodes by a combined use of dual functional catalysts. Chemical Communications, 22, 2818–2819. 68. Mao, L., Sotomura, T., Nakatsu, K., Nobuharu, K., Zhang, D., and Ohsaka, T. (2002). Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution. Journal of the Electrochemical Society, 149(4), A504–A507. 69. Mao, L., Zhang, D., Sotomura, T., Nakatsu, K., Koshiba, N., and Ohsaka, T. (2003). Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochimica Acta, 48(8), 1015–1021. 70. Matsuki, K., and Kamada, H. (1986). Oxygen reduction electrocatalysis on some manganese oxides. Electrochimica Acta, 31(1), 13–18. 71. Matsumoto, F., Uesugi, S., Koura, N., Okajima, T., and Ohsaka, T. (2001). Electrochemical reduction of molecular oxygen at Hg adatom-modified Au electrodes. Journal of Electroanalytical Chemistry, 505(1–2), 150–158. 72. Mohamad, A. A. (2006). Zn/gelled 6 M KOH/O2 zinc–air battery. Journal of Power Sources, 159(1), 752–757. 73. Neburchilov, V., Wang, H., Martin, J. J., and Qu, W. (2010). A review on air cathodes for zinc–air fuel cells. Journal of Power Sources, 195(5), 1271–1291. 74. Ohsaka, T., and El-Deab, M. S. (2004). In: S. G. Pandalai (Ed.) Recent Research Developements in Electrochemistry (Vol. 7). Kerala, India: Transworld Research Network. 75. Ohsaka, T., Mao, L., Arihara, K., and Sotomura, T. (2004). Bifunctional catalytic activity of manganese oxide toward O2 reduction: novel insight into the mechanism of alkaline air electrode. Electrochemistry Communications, 6(3), 273–277. 76. Othman, R., Basirun, W. J., Yahaya, A. H., and Arof, A. K. (2001). Hydroponics gel as a new electrolyte gelling agent for alkaline zinc–air cells. Journal of Power Sources, 103(1), 34–41. 77. Passaniti, J. L., and Dopp, R. B. (1994). Metal-air cathode and cell having catalytically active manganese compounds of valence state +2. US Patent 5,308,711. 78. Passaniti, J. L. and Dopp, R. B. (1995). Method of making air cathode material having catalytically active manganese compounds of valance state +2. US Patent 5,378,562. 79. Prasad, K. S., Muthuraman, G., and Zen, J. M. (2008). Direct electrocatalytic oxidation of cysteine and cystine based on nafion/lead oxide-manganese oxide combined catalyst. Electroanalysis, 20(11), 1167–1174. 80. Roche, I., Chainet, E., Chaîenet, M., and Vondrák, J. (2007). Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. The Journal of Physical Chemistry C, 111(3), 1434–1443. 81. Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G., Rose, P. N., Lucas, C. A., and Markovic, N. M. (2007). Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 315, 493–497. 82. Suffredini, H. B., Salazar-Banda, G. R., and Avaca, L. A. (2007). Enhanced ethanol oxidation on PbOx-containing electrode materials for fuel cell applications. Journal of Power Sources, 171(2), 355–362. 83. Wang, B. (2005). Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 152(1), 1–15. 84. Wang, Y. G., Cheng, L., Li, F., Xiong, H., and Xia, Y. (2007). High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chemistry of Materials, 19(8), 2095–2101. 85. Wang, C., Daimon, H., Onodera, T., Koda, T., and Sun, S. (2008). A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angewandte Chemie International Edition, 47(19), 3588–3591. 86. Wang, X., Sebastian, P. J., Smit, M. A., Yang, H., and Gamboa, S. A. (2003). Studies on the oxygen reduction catalyst for zinc–air battery electrode. Journal of Power Sources, 124(1), 278–284. 87. Winter, M., and Brodd, R. J. (2004). What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 104(10), 4245–4270. 88. Wu, G. M., Lin, S. J., You, J. H., and Yang, C. C. (2008). Study of high-anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells. Materials Chemistry and Physics, 112(3), 798–804. 89. Xie, X. Y., Ma, Z. F., Ma, X. X., Ren, Q., Schmidt, V. M., and Huang, L. (2007). Preparation and electrochemical characteristics of MnOx–CoTMPP/BP composite catalyst for oxygen reduction reaction in alkaline solution. Journal of the Electrochemical Society, 154(8), B733–B738. 90. Xu, Y., Ruban, A. V., and Mavrikakis, M. (2004). Adsorption and dissociation of O2 on Pt−Co and Pt−Fe alloys. Journal of the American Chemical Society, 126(14), 4717–4725. 91. Yang, C. C., Kumar, A. S., and Zen, J. M. (2006). Electrocatalytic reduction and determination of dissolved oxygen at a preanodized screen-printed carbon electrode modified with palladium nanoparticles. Electroanalysis, 18(1), 64–69. 92. Yeager, E. (1986). Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis, 38(1–2), 5–25. 93. Zen, J. M., Manoharan, R., and Goodenough, J. B. (1992). Oxygen reduction on ruthenium- oxide pyrochlores bonded to a proton-exchange membrane. Journal of Applied Electrochemistry, 22(2), 140–150. Chapter 4 94. Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5–6), 456–462. 95. Cullity, B. D. (1978). Elements of X-ray Diffraction (2nd ed.). Reading, Massachusetts, USA: Addison-Wesley Publishing. 96. Doyle, M., Choi, S. K., and Proulx, G. (2000). High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. Journal of the Electrochemical Society, 147(1), 34–37. 97. Felthouse, T. R. (1987). Catalytic oxidative cleavage of vicinal diols and related oxidations by ruthenium pyrochlore oxides: New catalysts for low-temperature oxidations with molecular oxygen. Journal of the American Chemical Society, 109(24), 7566–7568. 98. Felthouse, T. R., Fraundorf, P. B., Friedman, R. M., and Schosser, C. L. (1991). Expanded lattice ruthenium pyrochlore oxide catalysts I. Liquid-phase oxidations of vicinal diols, primary alcohols, and related substrates with molecular oxygen. Journal of Catalysis, 127(1), 393–420. 99. Heitner-Wirguin, C. (1996). Recent advances in perfluorinated ionomer membranes: structure, properties and applications. Journal of Membrane Science, 120(1), 1–33. 100. Horowitz, H. S., Longo, J. M., Horowitz, H. H., and Lewandowski, J. T. (1985). Solid State Chemistry in Catalysis: The synthesis and electrocatalytic properties of nonstoichiometric ruthenate pyrochlores (pp. 143–163). In: R. K. Graselli, and J. F. Brazdil (Eds.), ACS Symposium Series, 279. Washington, District: American Chemical Society (ACS) Publications. 101. Hsu, W. Y., and Gierke, T. D. (1982). Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules, 15(1), 101–105. 102. Ju, J., Wang, D., Lin, J., Li, G., Chen, J., You, L., Liao, F., Wu, N., Huang, H., and Yao, G. (2003). Hydrothermal Synthesis and Structure of Lead Titanate Pyrochlore Compounds. Chemistry of Materials,15(18), 3530–3536. 103. Ke, J. H., Kumar, A. S., Sue, J. W., Venkatesan, S., Zen, J. M. (2005). Catalysis and characterization of a rugged lead ruthenate pyrochlore membrane catalyst. Journal of Molecular Catalysis A: Chemical, 233(1–2), 111–120. 104. Kreuer, K. D., Paddison, S. J., Spohr, E., and Schuster, M. (2004). Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chemical Reviews, 104(10), 4637–4678. 105. Li, Q., Jensen, J. O., and Bjerrum, N. J. (2003). Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chemistry of Materials, 15(26), 4896–4915. 106. Lin, J., Lee, J. K.; Kellner, M., Wycisk, R., and Pintauro, P. N. (2006). Nafion-flourinated ethylene-propylene resin membrane blends for direct methanol fuel cells. Journal of the Electrochemical Society, 153(7), A1325–A1331. 107. Rozière, J., and Jones, D. J. (2003). Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annual Review of Materials Research, 33, 503–555. 108. Savadogo, O. (1998). Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. Journal of New Materials for Electrochemical Systems, 1(1), 47–66. 109. Sun, H., Sun, G.; Wang, S., Liu, J., Zhao, X., Wang, G., Xu, H., Hou, S., and Xin, Q. (2005). Pd electroless plated Nafion® membrane for high concentration DMFCs. Journal of Membrane Science, 259(1–2), 27–33. 110. Tian, A. H., Kim, J. Y., Shi, J. Y., Kim, K., and Lee, K. (2007). Surface-modified Nafion membrane by oleylamine-stabilized Pd nanoparticles for DMFC applications. Journal of Power Sources, 167(2), 302–308. 111. Tripković, A. V., Popović, K. Dj., Grgur, B. N., Blizanac, B., Ross, P. N., and Marković, N. M. (2002). Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochimica Acta, 47(22–23), 3707–3714. 112. Tripković, A. V., Popović, K. Dj., and Lović, J. D. (2001). The influence of the oxygen-containing species on the electrooxidation of the C1–C4 alcohols at some platinum single crystal surfaces in alkaline solution. Electrochimica Acta, 46(20–21), 3163–3173. 113. Wang, Y., Kawano, Y., Aubuchon, S. R., and Palmer, R. (2003). TGA and time-dependent FTIR study of dehydrating Nafion−Na membrane. Macromolecules, 36(4), 1138–1146. 114. Zen, J. M., and Kumar, A. S. (2001). A mimicking enzyme analogue for chemical sensors. Accounts of Chemical Research, 34(10), 772–780. 115. Zen, J. M., Kumar, A. S., and Chen, C. C. (2001a). Electrocatalytic oxidation and sensitive detection of cysteine on lead ruthenate pyrochlore modified electrode. Analytical Chemistry, 73(6), 1169–1175. 116. Zen, J. M., Kumar, A. S., and Chen, C. C. (2001b). Electrochemical behavior of lead-ruthenium oxide pyrochlore catalyst: redox characteristics in comparison with that of ruthenium dioxide. Journal of Molecular Catalysis A, 165(1–2), 177–188. 117. Zen, J. M., Liou, S. L., Kumar, A. S., and Hsia, M. S. (2003). An efficient and selective photocatalytic system for oxidation of sulfides to sulfoxides. Angewandte Chemie 42(5), 597–599. 118. Zen, J. M., and Wang, C. B. (1994). Determination of dissolved oxygen by catalytic reduction on a nafion/ruthenium-oxide pyrochlore chemically modified electrode. Journal of Electroanalytical Chemistry, 368(1–2), 251–256. Chapter 5 119. Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., and Green, M. L. (2002). Bioelectrochemical single-walled carbon nanotubes. Journal of the American Chemical Society, 124(43), 12664–12665. 120. Banks, C. E., and Compton, R. G. (2005). Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst, 130(9), 1232–1239. 121. Banks, C. E., and Compton, R. G. (2006). New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst, 131(1), 15–21. 122. Bin, L., Smyth, M. R., and O''Kennedy, R. (1996). Immunological activities of IgG antibody on precoated Fc receptor surfaces. Analytica Chimica Acta, 331(1–2), 97–102. 123. Bowling, R.J., Packard, R. T., and McCreery, R. L. (1989). Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure. Journal of the American Chemical Society, 111(4), 1217–1223. 124. Bowling, R. J., Packard, R.T., McCreery, R.L. (1989). Mechanism of electrochemical activation of carbon electrodes: role of graphite lattice defects. Langmuir, 5(3), 683–688. 125. Cai, C. X., and Chen, J. (2004a). Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Analytical Biochemistry, 325(2), 285–292. 126. Cai, C., and Chen, J. (2004b). Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry, 332(1), 75–83. 127. Chen, J. C., Chung, H. H., Hsu, C. T., Tsai, D. M., Kumar, A. S., and Zen, J. M. (2005). A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sensors and Actuators B: Chemical, 110(2), 364–369. 128. Chen, J. C., Kumar, A. S., Chung, H. H., Chien, S. H., Kuo, M. C., and Zen, J. M. (2006). An enzymeless electrochemical sensor for the selective determination of creatinine in human urine. Sensors and Actuators B: Chemical, 115(1), 473–480. 129. Chen, P., and McCreery, R. L. (1996). Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Analytical Chemistry, 68(22), 3958–3965. 130. Chen, X., Jia, J. B., and Dong, S. (2003). Organically modified sol-gel/chitosan composite based glucose biosensor. Electroanalysis, 15(7), 608–612. 131. Cheng, C. J. (2005). Development and application of enzymeless and selective electrochemical sensors. Doctoral dissertation, National Chung Hsing University. Taichung, Taiwan. 132. Chi, Q., Zhang, J., Dong, S., and Wang, E. (1994). Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes. Electrochimica Acta, 39(16), 2431–2438. 133. Chou, A., Bcking, T., Singh, N. K., and Gooding, J. J. (2005). Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chemical Communications, 7, 842–844. 134. Chiu, M. H. (2008). The development of multiple analytical techniques coupled with disposable screen-printed electrodes. Doctoral dissertation, National Chung Hsing University. Taichung, Taiwan. 135. Ciana, L.D., Bernacca, G., Bordin, F., Fenu, S., and Garetto, F. (1995). Highly sensitive amperometric measurement of alkaline phosphatase activity with glucose oxidase amplification. Journal of Electroanalytical Chemistry, 382(1–2), 129–135. 136. Davis, J. J., Coleman, K. S., Azamian, B. R., Bagshaw, C. B., and Green, M. L. (2003). Chemical and biochemical sensing with modified single walled carbon Nanotubes. Chemistry - A European Journal, 9(12), 3732–3939. 137. Degani, Y., and Heller, A. (1987). Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. The Journal of Physical Chemistry, 91(6), 1285–1289. 138. Dekanski, A., Stevanović, J., Stevanović, R., Nikolić, B. Ź., and Jovanović, V. M. (2001). Glassy carbon electrodes. I. Characterization and electrochemical activation. Carbon, 39, 1195–1205. 139. Freire, R. S., Pessoa, C. A., Mello, L. D. and Kubota, L. T. (2003). Direct electron transfer: An approach for electrochemical biosensors with higher selectivity and sensitivity. Journal of the Brazilian Chemical Society, 14(2), 203–243. 140. Guiseppi-Elie, A., Lei, C., and Baughman, R. H. (2002). Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology, 13(5), 559–564. 141. Hart, J., and Wring, S. (1997). Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses. Trends in Analytical Chemistry, 16(2), 89–103. 142. Hsieh, H. L. (2003) .Study of available lead affected by different treatments in soils with screen-printed carbon electrode .Master Thesis, National Chung Hsing University. Taichung, Taiwan. 143. Ilangovan, G., and Pillai, K.C. (1997). Electrochemical and XPS characterization of glassy carbon electrode surface effects on the preparation of a monomeric molybdate(VI)-modified electrode. Langmuir, 13, 566–575. 144. Ji, X., Banks, C. E., Crossley, A., and Compton, R. G. (2006). Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. ChemPhysChem, 7(6), 1337–1344. 145. Kachoosangi, R. T., Banks, C. E., and Compton, R. G. (2006). Simultaneous determination of uric acid and ascorbic acid using edge plane pyrolytic graphite electrodes. Electroanalysis, 18(8), 741–747. 146. Kachoosangi, R. T., and Compton, R. G. (2007). A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Analytical and Bioanalytical Chemistry, 387(8), 2793–2800. 147. Kamin, R. A., and Wilson, G. S. (1980). Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry, 52(8), 1198–1205. 148. Kavan, L. (1997). Electrochemical carbon. Chemical Reviews, 97(8), 3061–3082. 149. Kim, J., Jia, H., and Wang, P. (2006). Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances, 24, 296–308. 150. Kurusu, F., Tsunoda, H., Saito, A., Tomita, A., Kadota, A., Kayahara, N., Karube, I., and Gotoh, M. (2006). The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors. Analyst, 131(12), 1292–1298. 151. Laviron, E. (1979). Theory of differential pulse polarography at expanding or stationary planar electrodes for quasi-reversible or totally irreversible reactions. Journal of Electroanalytical Chemistry, 101(1–3), 19. 152. Lakshminarayanan, P.V., Toghiani, H., and Pittman Jr, C.U. (2004). Nitric acid oxidation of vapor grown carbon nanofibers. Carbon, 42, 2433–2442. 153. Lee, J., Kim, J., Kim, J., Jia, H., Kim, M. I., Kwak, J. H., Jin, S., Dohnalkova, A., Park, H. G., Chang, H. N., Wang, P., Grate, J. W., and Hyeon, T. (2005). Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials and their successful application as a host of enzyme immobilization. Small, 1(7), 744–753. 154. Lien, C. W. (2005). Activated screen printed carbon electrode and its application in electroanalysis. Master Thesis, National Chung Hsing University. Taichung, Taiwan. 155. Lin, J. C. (2000). Application of screen printed electrodes in pharmaceutical analysis. Master Thesis, National Chung Hsing University. Taichung, Taiwan. 156. Lin, Y. H., Lu, F., Tu, Y., and Ren, Z. F. (2004). Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 4(2), 191–195. 157. Liu, C. W. (1999). Studies towards the enhancing sensitivity of chemical sensors in the HPLC system. Master Thesis, National Chung Hsing University. Taichung, Taiwan. 158. Liu, J., Chou, A., Rahmat, W., Paddon-Row, M. N., and Gooding, J. J. (2005). Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis, 17(1), 38–46. 159. Liu, G., Paddon-Row, M. N., and Gooding, J. J. (2007). A molecular wire modified glassy carbon electrode for achieving direct electron transfer to native glucose oxidase. Electrochemistry Communications, 9(9), 2218–2223. 160. Liu, Y., Wang, M., Zhao, F., Xu, Z., and Dong, S. (200
摘要: Under the rapid growth of population and economy, environmental conservation and energy crisis are the most important tasks. Fuel cell, a kind of electrochemical energy converter, has been seen as one important key to solve these problems because of its pollution-free and high energy conversion efficiency. In this research, the main components of fuel cells were evaluated or improved by novel catalysts and electrochemical techniques. First of all, a new analytical system composing of electrochemical detection cell and manganese dioxide-deposited ring-disk electrode was developed for evaluating the most important oxygen-reduction reaction. Manganese dioxide was electro-deposited on the ring electrode for monitoring hydrogen peroxide (i.e. the product of oxygen-reduction reaction) due to its high sensitivity and selectivity. This new method is quicker and more sensitive than conventional rotating electrode, and its effect has confirmed through the evaluation of nano-gold and nano-palladium electrodes. Secondly, compared to activated MnO2 and hydrous MnO2, the outstanding catalytic characters of Nafion/PbMnOx were proved due to the larger surface area and faster HO2- disproportionate reaction. Note that the number of electron transfer of oxygen reduction reaches is as high as 3.4. As electrochemical evaluation, Nafion/PbMnOx induces improved performance in zinc-air fuel cell than other manganese oxides, including a maximum power of 38 mW cm−2, and a long discharge time of 52 hours at a current density of 10 mA cm−2. Thirdly, lead-ruthenium oxide pyrochlore owning special catalyst characteristic was synthesized in proton exchange membrane of direct methanol fuel cell. By controlled procedure with gradient impregnation, the effect caused from methanol crossover could be minimized effectively. Hence methanol concentration increase from 2 M to 10 M eventually reduces 23.5% of power loss. Finally, via a simple electrochemical anodization process, between the carbon-based screen-printed electrode and glucose oxidase not only aid in direct electron transfer behavior but also catalytic current corresponding to the concentration of glucose can be collected. These pH and glucose depended redox peaks proved clearly the unmodified biological activity of enzyme molecule. This biosensor built from anodized electrode shows rapid response within 20 seconds, calibration curve with a linear range from 0 to 900 μM glucose, and long-term stability tested for 14 days indicated less than 5% compromise.
環境保育與能源危機是人口與經濟快速成長之後所伴隨而來的重大議題。以電化學為基礎的燃料電池,不僅不會造成污染而且更擁有極高的能源轉換效率,其正是能夠一舉解決這兩項難題的關鍵技術。本研究即是利用新研發之催化劑搭配電化學之分析與處理技術對於燃料電池的主要組成元件進行評估與改進。首先針對最重要的氧氣還原反應,藉由二氧化錳對於雙氧水氧化之高靈敏度與選擇性,開發出結合流動分析以及二氧化錳修飾環盤電極的評估方法,並在奈米金以及奈米鈀上成功地獲得驗證。比較起傳統的旋轉電極,本方法可以更迅速且靈敏地評估陰極催化劑對於氧氣之還原反應。第二部份,比較全氟磺酸聚合物與三種不同錳氧化物混合後之催化特性。結果顯示,所合成之錳氧化物在有氧化鉛共存的製備條件下,其活性表面積會有增加之趨勢,而且可以加速氧氣還原之電子轉移速率。利用前述流動式環盤電極法以及旋轉電極法進行氧氣還原之評估,發現全氟磺酸聚合物/鉛錳氧化物的確能夠減少中間產物雙氧水之生成,氧氣還原電子轉移數由 2.1 增加為 3.4。實際於鋅空氣電池上進行測試,其效能與電化學評估之結果完全吻合,使用全氟磺酸聚合物/鉛錳氧化物作為陰極催化劑,可以產生最大功率為 38 mW cm−2,並可以於 10 mA cm−2 之電流密度下連續放電達52小時。第三部份是利用鉛釕黃綠石特殊的醇類氧化特性來對於直接甲醇燃料電池之質子交換膜進行改質處理。試驗發現將鉛釕黃綠石以漸層涵浸之方式合成於質子交換膜中,可以有效減少由甲醇穿透效應所造成之影響。當甲醇濃度由 2 M增加為 10 M時,能夠有效減少 23.5% 的功率耗損。最後一部份,使用簡單方便的電化學處理將碳材表面進行氧化,不但發現氧化之後的印刷碳電極與表面之葡萄糖氧化酵素具有直接的電子傳遞行為,更可以由電極上收集到對應於葡萄糖添加之氧化電流訊號。代表著電極上之酵素其生化活性依舊保持著,用來作為葡萄糖之生化感測器,具有不到 20 秒的分析時間,線性範圍可達 900 μM,而且在14天的測試中,偏差程度低於 5%。
URI: http://hdl.handle.net/11455/16903
其他識別: U0005-2408201118022000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408201118022000
顯示於類別:化學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。