Please use this identifier to cite or link to this item:
標題: The transport properties and low-frequency noise of GaN nanowires
作者: Huang, Kuo-Hsun
關鍵字: 氮化鎵奈米線
GaN nanowires
low-frequency noise
Lorentzian noise
1/f noise
出版社: 物理學系所
引用: [1] 一維奈米材料的研究,陳貴賢、吳季珍。物理雙月刊(23卷6期),2001年12月 [2] 低維奈米材料,馬遠榮。科學發展(382期),2004年10月 [3] SHOT NOISE IN MESOSCOPIC CONDUCTORS,Ya. M. Blanter, M. Buttiker, Physics Reports 336(2000)1-166 [4] NOISE IN SOLID STATE DEVICES AND CIRCUITS,Aldert van der Ziel。A WILEY-INTERSCIENCE PUBLICATION, JOHN WILEY & SONS [5] NOISE IN ELECTRONIC DEVICES AND SYSTEMS,M.J. BUCKINGHAM, B.Sc., Ph.D.。JOHN WILEY & SONS [6] P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981) [7] A.K. Raychaudhuri, Curr. Opin. Solid State Mater. Sci. 6, 67 (2002) [8] Hooge, Phys. Lett. A 29, 139 (1969) [9] P. G. Collins, M. S. Fuhrer, and A. Zettl, Appl. Phys. Lett. 76, 894 (2000) [10] E. S. Snow, J. P. Novak, M. D. Lay, and F. K. Perkins, Appl. Phys. Lett. 85, 4172(2004). F. N. [11] H. Ouacha, M. Willander, H. Y. Yu, Y. W. Park, M. S. Kabir, S. H. Magnus Persson, L. B. Kish, and A. Ouacha, Appl. Phys. Lett. 80, 1055 (2002) [12] N. B. Lukyanchikova, M. V. Petrichuk, N. P. Garbar, A. Mercha, E. Simoen, and C. Claeys, J. Appl. Phys. 94, 4461 (2003) [13] C.C.Chen, C.C.Yeh, C.H.Chen, M.Y.Yu, H.L.Liu, J.J.Wu, K.H.Chen, J.Y.Peng, Y.F.Chen, J. Am. Chem. Soc. 123, 2791. (2001) [14] S.Dhara, A.Datta, C.T.Wu, Z.H.Chen, Y.L.Wang, L.C.Chen, C.W.Hsu,H.M.Lin, C.C.Chen, Appl. Phys. Lett. 82, 451 [15] W. K. Wang, The noise measurement with the homemade low-noise preamplifiers, B.S Thesis, National Chung Hsing University (2001) [16] Communication Systems,Carlson, Crilly, Rutledge。Mc Graw Hill [17] Model SR780 Network Signal Analyzer,Revision2.2(July,96) [18] Y. F. Hsiou and Y. J. Yang, L. Stobinski, Watson Kuo, C. D. Chen, Appl. Phys. Lett. 84,984 (2004) [19] B. Gao, Y. F. Chen, M. S. Fuhrer, D. C. Glattli, and A. Bachtold, Phys. Rev. Lett. 95,196802 (2005) [20] A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schonenberger, J.-P. Salvetat, J.-M. Bonard, and L. Forro, Appl. Phys. Lett. 73, 274(1998) [21] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744(1998)
摘要: We measure the 1/f noise of GaN nanowires with a homemade preamplifier system between 300K and 77K. The electrodes of the nanowires are defined by e-beam lithography. The typical resistance of the sample is from kW to hundreds of kW at room temperature. We studied the noise spectrum of the nanowires at bias current from 1nA to 100nA. The investigated frequency range is between 0.01Hz and 10kHz. The excess noise varies as 1/ƒª. We found a is close to 1, and the noise magnitude is almost constant for each individual sample. We also find Lorentzian noise in lower temperature. Then, we can fit the Lorentzian noise from the 1/f noise spectrum. So we can get the Lorentzian time constant τ.
本實驗主要製作並量測單根氮化鎵奈米線(GaN nanowires)的雜訊與電傳輸特性。 GaN奈米線是由氣液固生長法(Vapor-Liquid-Solid,VLS)所長成。其長於矽基板上,然後我們將奈米線由矽基板上刮下,加入無水酒精配製成奈米線溶液,然後再將其撒佈在已做好黃光微影製程的高掺雜AS的N-type矽基板上,並利用電子束微影技術在單根GaN奈米線上製作Al接觸電極,藉以進行電性量測。 我們準備了七根GaN奈米線的量測樣品。這七塊樣品我們都在室溫下進行二線的I-V量測,確定其中的電極為ohmic。而且樣品的電阻值介於3kΩ~45kΩ之間。 接著,我們開始在室溫下對此七塊樣品做雜訊頻譜分析,我們對樣品所加之偏壓電流為1nA~100nA,所量頻寬為0.01Hz~10kHz之間。因此得到α相當接近1的結果,此結果也與Hooge Formula相符合。 另外,我們也在241k與179k的溫度下量測到Lorentzian noise。然後我們利用頻譜圖fitting出Lorentzian noise,並進一步得到其特徵時間τ: Lorentzian time constant(τ)= 0.045s at 179K = 0.06s at 241K 這是一個非常重要的發現,因為我們是第一個在奈米線上量測出Lorentzian noise。
其他識別: U0005-2007200609343300
Appears in Collections:物理學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.