Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16966
標題: 氮化鎵奈米線的多出雜訊之特性
Excess Noise Properties of GaN Nanowires
作者: Li, Liang-Chen
李良箴
關鍵字: GaN nanowires
氮化鎵奈米線
1/f noise
Lorentzian noise
excess noise
low-frequency noise
雜訊
多出雜訊
低頻雜訊
出版社: 物理學系所
引用: [1] H. Nyquist. Phys. Rev., 32:110, 1928. [2] J. B. Johnson. Phys. Rev., 32:97, 1928. [3] W. Schottky. Ann. Phys., 57:541, 1918. [4] F. K. Du Pr¶e. Phys. Rev., 78:615, 1950. [5] A. Richard F. Van der Zeil. Physica, 16:359, 1950. [6] P. Dutta and P. M. Horn. Rev. Mod. Phys., 53:497, 1981. [7] Sh. Kogan. Electronic noise and uctuations in solids. Cambridge university press, 1996. [8] A. Van der Ziel. Noise: Source, Characterization, Measurements. Prentice Hall Inc., Englewood Cli®s, NJ, 1970. [9] N. Weiner. Acta Math., 55:117, 1930. [10] A. Khintchine. Math. Ann., 109:604, 1934. [11] M. Stoisiek and D. Wolf. J. Appl. Phys., 47:362, 1976. [12] F. N. Hooge and A. M. F. Hoppenbrowers. Physica, 45:368, 1969. [13] F. N. Hooge. Phys. Lett. A, 29:139, 1969. [14] F. N. Hooge. Physica B, 83:14, 1976. [15] L. K. J. Vandamme. Phys. Lett. A, 49:233, 1974. [16] T. G. M. Kleinpenning. J. Phys. Chem. Solids, 37:925, 1976. [17] M. Ishigami, J. H. Chen, E. D. Williams, D. Tobias, Y. F. Chen, and M. S. Fuhrer. Appl. Phys. Lett., 88:203116, 2006. [18] A. L. McWhorter. Semiconductor surface physics. University of Philadelphia Press, Philadelphia, 1957. [19] Richard F. Voss and John Clarke. Phys. Rev. B, 13:556, 1976. [20] P. Dutta, P. Dimon, and P. M. Horn. Phys. Rev. Lett., 43:646, 1979. [21] J. W. Eberhard and P. M. Horn. Phys. Rev. B, 18:6681, 1978. [22] Philip G. Collins, M. S. Fuhrer, and A. Zettl. Appl. Phys. Lett., 76:894, 2000. [23] H. Ouacha, M. Willander, H. Y. Yu, Y. W. Park, M. S. Kabir, H. Magnus Persson, L. B. Kish, and A. Ouacha. Appl. Phys. Lett., 80:1055, 2002. [24] E. S. Snow, J. P. Novak, M. D. Lay, and F. K. Perkins. Appl. Phys. Lett., 85:4172, 2004. [25] Aveek Bid, Achyut Bora, and A. K. Raychaudhuri. Nanotechnology, 17:152, 2006. [26] Shahed Reza, Quyen T. Huynh, Gijs Bosman, Jennifer Sippel-Oakley, and Andrew G. Rinzler. Appl. Phys. Lett., 100:094318, 2006. [27] S. Machlup. J. Appl. Phys., 25:342, 1954. [28] N. B. Lukyanchikova, M. V. Petrichuk, N. P. Garbar, A. Mercha, E. Simoen, and C. Claeys. J. Appl. Phys., 94:4461, 2003. 29] M. J. Deen, S. L. Rumyantsev, and M. Schroter. J. Appl. Phys., 85:1192, 1999. [30] S. L. Rumyantsev, M. S. Shur, Yu. Bilenko, P. V. Kosterin, and B. M. Salzberg. J. Appl. Phys., 96:966, 2004. [31] S. Bychikhin, D. Pogany, L. K. J. Vandamme, G. Meneghesso, and E. Zanoni. J. Appl. Phys., 97:123714, 2005. [32] Mark B. Ketchen and John Clarke. Phys. Rev. B, 17:114, 1978. [33] J. MÄuller, S. von Moln¶ar, Y. Ohno, and H. Ohno. Phys. Rev. Lett., 96:186601, 2006. [34] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, R. Gaska, and M. A. Khan. IEE Proc.-Circuits Devices Syst., 149:32, 2002. [35] S. L. Rumyantsev, Y. Deng, E. Borovitskaya, A. Dmitriev, W. Knap, N. Pala, M. S. Shur, M. E. Levinshtein, M. Asif Khan, G. Simin, J. Yang, and X. Hu. J. Appl. Phys., 92:4726, 2002. [36] S. L. Rumyantsev, Y. Deng, S. Shur, M. E. Levinshtein, M. Asif Khan, G. Simin, J. Yang, X. Hu, and R. Gaska. Semicond. Sci. Technol., 18:589, 2003. [37] S. L. Rumyantsev, N. Pala, M. S. Shur, M. E. Levinshtein, M. Asif Khan, G. Simin, and J. Yang. J. Appl. Phys., 93:10030, 2003. [38] L. Tarkiainen, R.and Roschier, M. Ahlskog, M. Paalanen, and P. Hakonen. Physica E, 28:57, 2005. [39] M. E. Levinshtein and S. L. Rumyantsev. Semicond. Sci. Technol., 9:1183, 1994. [40] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, J. Y. Peng, and Y. F. Chen. J. Am. Chem. Soc., 123:2791, 2001. [41] Jinkyoung Yoo, Young-Joon Hong, Sung Jin An, Gyu-Chul Yi, Bonghwan Chon, Taiha Joo, Jong-Wook Kim, and Jeong-Soo Lee. Appl. Phys. Lett., 89:043124, 2006. [42] J. C. Nabity. Nanometer Pattern Generation System. JC Nabity Lithography Systems, P.O. Box 5354, Bozeman, MT 59717 USA, 1996-2006. [43] T. C. Yeh. Electrical properties and device characteristic of single gan nanowire. Master''s thesis, National Chung Hsing University, 2004. [44] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang. Appl. Phys. Lett., 70:57, 1997. [45] Y. J. Lin and C. T. Lee. Appl. Phys. Lett., 77:3986, 2000. [46] J. R. Kim, H. M. So, J. W. Park, J. J. Kim, J. Kim, C. J. Lee, and S.C. Lyu. Appl. Phys. Lett., 80:3548, 2002. [47] Stanford Research Systems Inc. Model SR560 Low-Noise Voltage Preamplier. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [48] Stanford Research Systems Inc. Model SR780 Network Signal Analyzer. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [49] Fischer Connectors SA. Fischer connector general catalogue. Route de Pampigny 42, CH-1143 Apples, Switzerland. [50] V. W. L. Chin, T. L. Tansley, and T. Osotchan. J. Appl. Phys., 75:7365, 1994. [51] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur. Properties of advanced semiconductor materials, GaN, AlN, InN, BN, SiC, SiGe. John Wielly and Songs, Inc., 2001.
摘要: In this study, we examine the properties of the low-frequency excess noise of the GaN nanowires, which are grown by Vapor-Liquid-Solid method. The diameter of these nanowires is about 80 to 150nm. The 300-400 nm-wide Al electrodes to the nanowires are defined by e-beam lithography. The two-wire resistances of the samples are from few kohms to hundreds of kohms at room temperature. At room temperature, the behavior of the 1/f noise follows the Hooge''s equation in both two-wire and four-wire measurements. The Lorentzian noise is observed at the sufficient applied bias current from 303 K to 135 K. The characteristic relaxation time associated with the Lorentzian noise is temperature dependent. From the characteristic time and the power spectral density of the Lorentzian noise, we can obtain the activation energy of the carrier trapping process. In the result of two-wire temperature-dependent measurement, we find there exist two temperature regimes where activation behavior is observed. From the Arrhenius plot, we find that activation energy, Ea, decreases from 818 meV to 745.8 meV in the temperature range from 300 K to 265 K, and Ea decreases from 129.6 meV to 105.9 meV for T from 205 K to 135 K with different bias currents, from 2 nA to 8 nA. The activation energy Ea from the four-wire measurement is 41.7 meV, and E0 = 37.7 meV and E1 = 41.9 meV from Levinshrein''s model. For the nanowires, the activation energy of the trap is close to the ionization energy of the wutzite GaN bulk material. We also observed that the Lorentzian noise in the two-wire measurement is much more significant than that in four-wire measurement. The noise magnitude of the 1/f noise in two-wire measurements is also resistance dependent. This indicate that most of the noise comes from the metal-semiconductor contact region. We also find the correlation of noise between adjacent nanowire sections might be caused by the strong voltage fluctuations under the contact region in between, which may contain complicated alloy or defects consisting of GaN and Al or Ti/Au. Such kind of fluctuations may generate coherent current or voltage signals in the nanowire nearby. From our investigation, the low-frequency excess noise of GaN nanowires is smaller than that of carbon nanotubes . This makes GaN nanowire a promising material of nanodevices, such as photodetectors, sensors, and low-frequency transistors.
我們對氮化鎵奈米線的低頻多出雜訊的特性進行研究。奈米線樣品的直徑約為80 ~ 150 nm,其電極圖案是用電子微影術所製作而成的,金屬電極寬度為300 ~ 400 nm,樣品的兩線電阻則是從數k到數百k歐姆。 在室溫的環境下,無論是用兩線或四線量測,觀察到的1/f雜訊都是遵守Hooge方程式。只要偏壓電流夠大,我們在135 K到303 K都量測到Lorentzian雜訊。從這些Lorentzian雜訊的特徵時間跟溫度的關係可以計算出載子從缺陷中逃出所需的活化能 (Ea)。從我們兩線實驗的結果,對應不同的偏壓電流 (2 nA ~ 8 nA),在303 K 到 265 K的溫度範圍內,所得活化能為 818 meV ~ 745.8 meV;在205K 到 135 K,所得活化能為 129.6 meV ~ 105.9 meV。而從四線量測的計算結果,得到的Ea為41.69 meV,這結果和氮化鎵塊材的游離能30 meV類似。在實驗的觀察中,Lorentzian雜訊在兩線量測中不但比在四線量測中明顯,而且大小強度跟電阻大小有關。由此可見,使用兩線量測方法得到的雜訊中絕大部份是來自元件的歐姆接點部份。 我們也觀察到在同一條奈米線被電極截開的相鄰區域有雜訊的相關性存在,且極性相反,這可能是因為在接點部份有較劇烈不規則的電壓擾動,所以我們推測在接點區域,半導體與電極的金屬形成合金與複雜的缺陷所造成。 拿我們的實驗結果跟奈米碳管實驗比較,氮化鎵奈米線的低頻雜訊比奈米碳管小,這是在利用氮化鎵奈米線製作奈米光電元件時的一項優勢。
URI: http://hdl.handle.net/11455/16966
其他識別: U0005-2501200723563300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2501200723563300
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.