Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16986
標題: 合成銀硫化物- Ag2S 和Ag2Se量子點敏化太陽能電池的光學、光電壓特性研究
Synthesis, optical and photovoltaic properties of silver chalcogenides-Ag2S and Ag2Se quantum dots as sensitizers for solar cells application
作者: Tubtimtae, Auttasit
高貴生
關鍵字: quantum dots
量子點
solar cells
successive ionic layer absorption and reaction deposition
silver sulfide
silver selenide
太陽能電池
連續的離子層吸收與反應沉積法
硫化銀
硒化銀
出版社: 物理學系所
引用: [1] K. A. Tsokos, Physics for the IB Diploma Fifth edition, Cambridge University Press, Cambridge, 2008 ISBN 0521708206. [2] Perlin, John (2004). "The Silicon Solar Cell Turns 50". National Renewable Energy Laboratory. [online] available http://www.nrel.gov/docs/fy04osti/33947.pdf. Retrieved 5 October 2010. [3] Electricity Generating Authority of Thailand [online] available http://www2.egat.co.th/re/solarcell/solarcell.htm. [4] Y. Tian and T. Tatsuma, J. Am. Chem. Soc. 127 (2005) 7632. [5] W. Shockley and H.J. Queisser, J. Appl. Phys. 32 (1961) 510. [6] N. S. Lewis, Science 315 (2007) 798. [7] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA, 2005 ISBN 3-527-40428-7 pp 141. [8] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 127 (2005) 16835. [9] “Solar Cell-Photovoltaic” [online] available http://bangkok-guide.z-xxl.com/snack-knowledge/4169.html. [10] “Thananun traffic Co.Ltd” [online] available http://thananun2008.tarad.com/. [11] “Porntawee OA Sales and Services” [online] available http://www.pornthaveeoa.com/index.php?mo=30&cid=131656. [12] “Praphansarn” [online] available http://www.praphansarn.com/new/forum/forum_posts.asp?TID=12061&get=last. [13] “Dye-sensitized solar cell” [online] available http://www.postech.ac.kr/chem/mras/eunju.htm [14] S.P.K. Lee, N.G. Park, Nature Materials, 8 (2009) 665. [15] “Nanotechnology-Quantum dot” [online] available http://www.atom.rmutphysics.com/charud/scibook/nanotech/Page/Unit3-9.html. [16] S. Gorer, G. Hodes, J. Phys. Chem. 98 (1994) 5338. [17] I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan, Z. Hens, Chem. Mater. 19 (2007) 6101. [18] R.D. Shaller, V.I. Klimov, Phys. Rev. Lett. 92 (2004) 186601. [19] M. C. Hanna and A. J. Nozik, J. Appl. Phys. 100 (2006) 074510. [20] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382. [21] L. W. Chong, H. T. Chien, and Y. L. Lee, J. Power Sources 195 (2010) 5109. [22] C. H. Chang and Y. L. Lee, Appl. Phys. Lett. 91 (2007) 053503. [23] Y. L. Lee and C. H. Chang, J. Power Sources 185 (2008) 584. [24] Z. Yang, C. Y. Chen, C. W. Liu, H. T. Chang, Chem. Commun. 46 (2010) 5485. [25] Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto, S. Kuwabata, Chem. Lett. 36 (2007) 88. [26] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, G. Hodes, J. Photochem. Photobiol. A 181 (2006) 306. [27] H. J. Lee, J. -H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel, M. K. Nazeeruddin, J. Phys. Chem. C 112 (2008) 11600. [28] H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, M. K. Nazeeruddin, Langmuir 25 (2009) 7602. [29] S. Q. Fan, D. Kim, J. J. Kim, D. W. Jung, S. O. Kang, J. Ko, Electrochem. Commun. 11 (2009) 1337. [30] Q. Shen, J. Kobayashi, L. J. Diguna, T. Toyoda, J. Appl. Phys. 103 (2008) 084304. [31] I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, J. Bisquert, Acc. Chem. Res. 42 (2009) 1848. [32] G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus- Abraham, E. H. Sargent, ACS Nano. 2 (2008) 833. [33] M. Abbas, B. Ali, S. I. Shah, P. Akhter, Key. Eng. Mat. 442 (2010) 404. [34] R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach J. Phys. Chem. B 106 (2002) 7578. [35] G. Y. Lan, Z. Yang, Y. W. Lin, Z. H. Lin, H. Y. Liao, H. T. Chang, J. Mater. Chem. 19 (2009) 2349. [36] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, J. Am. Chem. Soc. 130 (2008) 1124. [37] S. Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, J. Ko, Appl. Phys. Lett. 96 (2010) 063501. [38] Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Phys. Chem. Chem. Phys. 13 (2011) 4659. [39] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K. Nazeeruddin, M. Grätzel, Nano Lett. 10 (2010) 2609. [40] A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Lux-Steiner, Phys. Status Solidi (RRL) 2 (2008) 172. [41] S. Kitova, J. Eneva, A. Panov, H. Haefke, J. Imaging Sci. Technol. 38 (1994) 484. [42] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, Electrochem. Commun. 12 (2010) 1158. [43] T. G. Schaaff, A. J. Rodinone, J. Phys. Chem. 107 (2003) 10416. [44] A. Martí, G.L. Araújo, Sol. Energy. Mater. Sol. Cells. 43 (1996) 203. [45] R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem. 98 (1994) 3183. [46] J. F. Reber, M. Rusek, J. Phys. Chem. 90 (1986) 824. [47] R. Dalven, R. Gill, Phys. Rev. 159 (1967) 645. [48] Karakaya, W. T. Thompson, ASM international, Materials Park, OH. 1 (1990) pp. 88. [49] H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 27 (2004) 85. [50] V. Buschmann, G. V. Tendeloo, Ph. Monnoyer and J. B. Nagy, Langmuir 14 (1998) 1528. [51] A. Tubtimtae, M. W. Lee, G. J. Wang, J. Power Sources 196 (2011) 6603. [52] University of Toronto “The Ratio of Surface Area to Volume Explains Why Cells Are Small”.[online] available http://www.mie.utoronto.ca/labs/lcdlab/biopic/fig/4.2.jpg. [53] “Compound semiconductors: Physics, technology and device concepts” [online] available http://www-opto.e-technik.uni-ulm.de/lehre/cs/. [54] U. Diebold "The surface science of titanium dioxide". Surface Science Reports 48 (5-8) (2003) 53-229. doi:10.1016/S0167-5729(02)00100-0. [55] “Titanium dioxide” [online] available http://en.wikipedia.org/wiki/Titanium_dioxide. [56] M. Gräzel, Nature, 414 (2001) 338. [57] “Silver sulfide” [online] available http://commons.wikimedia.org/wiki/File:Silver-sulfide-unit-cell-3D-balls.png. [58] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann 1997 ISBN 0080379419. [59] L. S. Ramsdell, The crystallography of acnthite, Ag2S. Amer. Mineralogist 28 (1943) 401. [60] L. Yang, R. Xing, Q. Shen, K. Jiang, F. Ye, J. Wang, Q. Ren, J. Phys. Chem. B 110 (2006) 10534. [61] N. Belman, Y. Golan, A. Berman, Cryst. Growth Des. 5 (2005) 439. [62] H. Dlala, M. Almouk, S. Belgacem, P. Girard, D. Barjon, Eur. Phys. J. A. 2 (1998) 13. [63] A. F. Wells, Structural Inorganic Chemistry 5th edition, Oxford Science Publications (1984) ISBN 0-19-855370-6. [64] G. Hodes, J. Manasen, D. Cahen, Nature, 261 (1976) 403. [65] A. K. Abass, Solar Energy Mater. 17 (1988) 375. [66] D. Brqhweiler, R. Seifert, G. Calzaferri, J. Phys. Chem., B 103 (1999) 6397. [67] “Silver sulfide” [online] available http://en.wikipedia.org/wiki/Silver_sulfide. [68] “Silver(I) selenide” [online] available http://en.wikipedia.org/wiki/Silver(I)_selenide. [69] G. A. Wiegers, Am. Mineral. 56 (1971) 1882. [70] A. Boettcher, G. Haase, H. Z. Treupel, Angew. Phys. 7 (1955) 487. [71] B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang, Y. Xia, Adv. Funct. Mater. 12 (2002) 679. [72] F. Shimojo, H. Okazaki, J. Phys. Soc. Jpn. 62 (1993) 179. [73] P. Z. Ralphs, Phys. Chem. 31B (1936) 157. [74] M. C. S. Kumar, B. Pradeep, Semicond. Sci. Technol. 17 (2002) 261. [75] P. K. Khanna, B. K. Das, Mater. Lett. 58 (2004) 1030. [76] A. G. Abdullayev, R. B. Shafizade, E. S. Krupnikov, K. V. Kiriluk Thin Solid Films, 106 (1983) 175. [77] D. Grientschnig, W. Sitte, J. Phys. Chem. Solids 52 (1991) 805. [78] R. Daleven, R. Gill, J. Appl. Phys. 38 (1967) 753. [79] M. Ferhat, J. Nagao, Appl. Phys. Lett. 88 (2000) 813. [80] F. Kirchhoff, J. M. Holender, M. J. Gillan Physical Review B 54 (1996) 190. [81] K. L. Lewis, A.M. Pitt, T. Wyatt-Davies, J.R. Milward, Mater. Res. Soc. Symp. Proc. 374 (1994) 105. [82] G. Hodes, J.Manassen, D. Cahen, J. Appl. Electrochem. 7 (1977) 181. [83] P. Allongue, H. Cachet,M. Froment and R. Tenne, J. Electroanal. Chem. 269 (1989) 295. [84] A. W. Adamson, A. P. Gast, Physical chemistry of surfaces; 6Ed, Wiley, 1997. [85] B. E. Conway, R. E. White, J. O. Bockris, Modern Aspects of Electrochemistry, 16, 496. [86] P. Wachter, C. Schreiner, M. Zistler, D. Gerhard, P. Wasserscheid, H. J. Gores, Microchim. Acta 160 (2008) 125. [87] N. Murakami, M. Gratzel, Inorg. Chim. Acta 361 (2008) 572. [88] G. Hodes, J. Manassen, D. Cahen, J. Electrochem. Soc. 127 (1980) 544 . [89] Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, H. T. Chang, Adv. Energy Mater. 1 (2011) 259. [90] Y. L. Lee, Y. S. Lo, Adv. Funct. Mater. 19 (2009) 604. [91] “Optical air mass” [online] available http://www.tippens.info/TKB/Presentation.php?view=show&pageid=145. [92] “Sunlight” [online] available http://en.wikipedia.org/wiki/Sunlight. [93] W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, J. Phys. Chem. B 107 (2003) 1798. [94] G. Liu, W. Jaegermann, J. He, V. Sundström, L. Sun, J. Phys. Chem. B 106 (2002) 5814. [95] Y. Xu, M. A. A. Schoonen, Am. Mineral. 85 (2000) 543. [96] “Refluxing” [online] available http://www.chem.wisc.edu/areas/organic/orglab/tech/reflux.htm. [97] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA, 2005 ISBN 3-527-40428-7 pp. 140. [98] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA, 2005 ISBN 3-527-40428-7 pp. 151. [99] M. Grätzel, Prog. Photovolt. Res. Appl. 8 (2000) 171. [100] M. Shalom, S. Dor, S. Rühle, L. Grinis, A. Zaban, J. Phys. Chem. C 113 (2009) 3895. [101] H. Piller, E. D. Palik, “Cadmium Selenide (CdSe)” Handbook of Optical Constant of Solids II, ACADEMIC PRESS, INC, 1991 ISBN0-12-544422-2 pp. 564. [102] Editoral, Sol. Energy. Mater. Sol. Cells 92 (2008) 371. [103] H. J. Lee, J. Bang, J. Park, S. Kim, S. M. Park, Chem. Mater. 22 (2010) 5636. [104] Nalt. Bur. Stand. (U.S.), Circ. 539, 10 (1960) 51.
摘要: We present a new photosensitizer - Ag2S quantum dots (QDs) - for solar cells. The QDs were grown by the successive ionic layer adsorption and reaction deposition method. The assembled Ag2S-QD solar cells yield a best power conversion efficiency of 1.70% and a short-circuit current of 1.54 mA/cm2 under 10.8% sun. The solar cells have a maximal external quantum efficiency (EQE) of 50% at λ=530 nm and an average EQE of ~ 42% over the spectral range of 400-1000 nm. For the family of silver chalcogenide system-Ag2Se quantum dots (QDs), the external quantum efficiency (EQE) spectrum of the assembled cells covers the entire solar power spectrum of 350-2500 nm with an average EQE of ~ 80% in the short-wavelength region (350-800 nm) and 56% over entire solar spectrum. The effective photovoltaic range of Ag2S and Ag2Se were ~ 2-4 and 7-14 times, respectively broader than that of the cadmium calcogenide system—CdS and CdSe. The photocurrent that Ag2Se generates is four times higher than that of N3 dye. The best solar cell yields power conversion efficiencies of 1.76% and 3.12% under 99.4% and 9.7% sun, respectively. We also have demonstrated of Ag2S/Ag2Se co-sensitized solar cells with polysulfide redox couple. Our best efficiency at one sun is 1.27% featuring CuS counterelectrode, which is higher than single QDs under the same kind of electrolyte and an average EQE entire solar spectrum ~ 68%. A higher photocurrent than that of single QDs can be generated from this double-layered QDs is almost five times compared with N3 dye. The results show that silver chalcogenide element can be used as a highly efficient broadband sensitizer for solar cells.
我們介紹一種新有機染料光敏化劑,硫化銀量子點太陽能電池。藉由連續的離子層吸收與反應沉積法成長量子點(QDs)。組裝硫化銀量子點太陽能電池產生最佳功率轉換效率1.70%, 短路電流1.54 mA/cm2在10.8%太陽光照下。在光譜400-1000 nm的範圍間,波長530 nm且平均外部量子效率42%太陽能電池具有最大的外部量子效率(EQE) 50%。銀硫族化合物系統族中的硒化銀(Ag2Se)量子點所組裝的太陽能電池其外部量子效率光譜涵蓋所有太陽功率光譜350-2500 nm,具有平均EQE 80%, 在短波長區間中(350-800 nm)有56%是在所有太陽光譜之上。硫化銀和硒化銀的有效光伏範圍分別是鎘硫族化合物系中硫化鎘和硒化鎘的2-4倍及7-14倍相較下更為寬廣。硒化銀產生的光電流比N3染料高出4倍。最佳太陽能電池產生功率轉換效率達1.76% 和3.12% 分別在太陽照度99.4% 和9.7%. 我們也已証明使用硫化銀和硒化銀做為共敏化劑與聚硫化物做為氧化還原結合所做的太陽能電池,在一日照下我們得到最佳的效率是1.27%並以硫化銅做為輔助電極,在完全太陽光譜相同種類的電解質和平均EQE是比單層量子點高出68%。在這種雙層量子點結構中比單層量子點太陽能電池有更高的光電流,與N3染料相比較幾乎是高出5倍。這一結果顯示銀硫族化合物元素能被使用在太陽能電池使其為更高效率寬頻帶染敏化劑。
URI: http://hdl.handle.net/11455/16986
其他識別: U0005-0608201117572400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0608201117572400
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.